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bus2RLSpec

Create reinforcement learning data specifications for elements of a Simulink bus

Syntax
specs = bus2RLSpec(busName)
specs = bus2RLSpec(busName,Name,Value)

Description

specs = bus2RLSpec(busName) creates a set of reinforcement learning data specifications from
the Simulink® bus object specified by busName. One specification element is created for each leaf
element in the corresponding Simulink bus. Use these specifications to define actions and
observations for a Simulink reinforcement learning environment.

specs = bus2RLSpec(busName,Name,Value) specifies options for creating specifications using
one or more Name, Value pair arguments.

Examples

Create an observation specification object from a bus object

This example shows how to use the function bus2RLSpec to create an observation specification
object from a Simulink® bus object.

Create a bus object.
obsBus = Simulink.Bus();
Create three elements in the bus and specify their names.

obsBus.Elements(1l) = Simulink.BusElement;

obsBus.Elements(1l).Name = 'sin theta';
obsBus.Elements(2) = Simulink.BusElement;
obsBus.Elements(2).Name = 'cos theta';

obsBus.Elements(3) = Simulink.BusElement;
obsBus.Elements(3).Name = 'dtheta’;

Create the observation specification objects using the Simulink bus object.
obsInfo = bus2RLSpec('obsBus');

You can then use obsInfo, together with the corresponding Simulink model, to create a
reinforcement learning environment. For an example, see “Train DDPG Agent to Swing Up and
Balance Pendulum with Bus Signal”.



bus2RLSpec

Create an action specification object from a bus object

This example shows how to call the function bus2RLSpec using name and value pairs to create an
action specification object from a Simulink® bus object.

Create a bus object.
actBus = Simulink.Bus();
Create one element in the bus and specify the name.

actBus.Elements(1l) = Simulink.BusElement;
actBus.Elements(1).Name = 'actuator';

Create the observation specification objects using the Simulink bus object.
actInfo = bus2RLSpec('actBus', 'DiscreteElements',{'actuator',[-1 11});
This specifies that the 'actuator' bus element can carry two possible values, -1, and 1.

You can then use actInfo, together with the corresponding Simulink model, to create a
reinforcement learning environment. Specifically the function that creates the environment uses
actInfo to determine the right bus output of the agent block.

For an example, see “Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”.

Input Arguments

busName — Name of Simulink bus object
string | character vector

Name of Simulink bus object, specified as a string or character vector.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, .. .,NameN, ValueN.

Example: 'DiscreteElements',{'force',[-5 0 5]} setsthe 'force' bus element to be a
discrete data specification with three possible values, -5, 0, and 5

Model — Name of Simulink model
string | character vector

Name of the Simulink model, specified as the comma-separated pair consisting of 'Model' and a
string or character vector. Specify the model name when the bus object is defined in the model global
workspace (for example, in a data dictionary) instead of the MATLAB® workspace.

BusElementNames — Names of bus leaf elements
string array

Names of bus leaf elements for which to create specifications, specified as the comma-separated pair
consisting of BusElementNames' and a string array. To create observation specifications for a subset
of the elements in a Simulink bus object, specify BusElementNames. If you do not specify
BusElementNames, a data specification is created for each leaf element in the bus.
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Note Do not specify BusElementNames when creating specifications for action signals. The RL
Agent block must output the full bus signal.

DiscreteElements — Finite values for discrete bus elements
cell array of name-value pairs

Finite values for discrete bus elements, specified as the comma-separated pair consisting of
'DiscreteElements' and a cell array of name-value pairs. Each name-value pair consists of a bus
leaf element name and an array of discrete values. The specified discrete values must be castable to
the data type of the specified action signal.

If you do not specify discrete values for an element specification, the element is continuous.

Example: 'ActionDiscretElements',{'force',[-10 0 10], 'torque',[-5 O 5]} specifies
discrete values for the 'force' and 'torque’ leaf elements of a bus action signal.

Output Arguments

specs — Data specifications
riNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Data specifications for reinforcement learning actions or observations, returned as one of the
following:

* rlNumericSpec object for a single continuous bus element
* rlFiniteSetSpec object for a single discrete bus element
* Array of data specification objects for multiple bus elements

By default, all data specifications for bus elements are rLNumericSpec objects. To create a discrete
specification for one or more bus elements, specify the element names using the DiscreteElements
name-value pair.

See Also

Blocks
RL Agent

Functions
createlIntegratedEnv | rlFiniteSetSpec | riNumericSpec | rlSimulinkEnv

Topics
“Create Simulink Environments for Reinforcement Learning”

Introduced in R2019a
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createGridWorld

Create a two-dimensional grid world for reinforcement learning

Syntax

GW
GW

createGridWorld(m,n)
createGridWorld(m,n, moves)

Description
GW = createGridWorld(m,n) creates a grid world GW of size m-by-n with default actions of
[INI;ISI;IEI;IWI]'

GW = createGridWorld(m,n,moves) creates a grid world GW of size m-by-n with actions specified
by moves.

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South = 2, East = 3,
West = 4).

The agent begins from cell [2,1] (second row, first column).

The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).

The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.

The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).

All other actions result in -1 reward.

o U A W N
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First, create a GridWorld object using the createGridWorld function.
GW = createGridWorld(5,5)

GW =
GridWorld with properties:

GridSize: [5 5]
CurrentState: "[1,1]"

States: [25x1 string]
Actions: [4x1 string]

T: [25x25x4 double]

R: [25x25x4 double]
ObstacleStates: [0x1 string]
TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.

GW.CurrentState = '[2,1]"';
GW.TerminalStates "[5,51";
GW.ObstacleStates [“r3,31";"13,41";"13,51";"[4,31"1;

Update the state transition matrix for the obstacle states and set the jump rule over the obstacle
states.

updateStateTranstionForObstacles (GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]1"),:) = 1;

Next, define the rewards in the reward transition matrix.

ns numel (GW.States);
nA numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
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GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rIMDPEnNv to create a grid world environment using the GridWorld object GW.

env rIMDPEnv (GW)

env =
rIMDPEnv with properties:

Model: [1x1 rl.env.GridWorld]
ResetFcn: []

You can visualize the grid world environment using the plot function.

plot(env)

Input Arguments

m — Number of rows of the grid world
scalar

Number of rows of the grid world, specified as a scalar.

n — Number of columns of the grid world
scalar
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Number of columns of the grid world, specified as a scalar.

moves — Action names
‘Standard’' (default) | 'Kings'

Action names, specified as either 'Standard' or 'Kings'. When moves is set to
 'Standard', the actionsare ['N';'S';'E';'W'].

* 'Kings', the actionsare ['N';'S';'E';'W';'NE';'NW';'SE';'SW'].
Output Arguments

GW — Two-dimensional grid world
GridWorld object

Two-dimensional grid world, returned as a GridWorld object with properties listed below. For more
information, see “Create Custom Grid World Environments”.

GridSize — Size of the grid world
[m,n] vector

Size of the grid world, specified as a [m,n] vector.

CurrentState — Name of the current state
string

Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector of length m*n.

Actions — Action names
string vector

Action names, specified as a string vector. The length of the Actions vector is determined by the
moves argument.

Actions is a string vector of length:

* Four, if moves is specified as 'Standard’.
» Eight, moves is specified as 'Kings"'.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible movements of the
agent in an environment. State transition matrix T is a probability matrix that indicates how likely the
agent will move from the current state s to any possible next state s' by performing action a. T is
given by,

T(s,s’,a) = probability(s'|s,a).
T is:
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* A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
* A K-by-K-by-8 array, if moves is specified as 'Kings'.

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, determines how much reward the agent receives
after performing an action in the environment. R has the same shape and size as state transition
matrix T. Reward transition matrix R is given by,

r = R(s,s,a).
R is:

* A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
* A K-by-K-by-8 array, if moves is specified as 'Kings"'.

ObstacleStates — State names that cannot be reached in the grid world
string vector

State names that cannot be reached in the grid world, specified as a string vector.

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector.

See Also
rIMDPEnv | rlPredefinedEnv

Topics
“Create Custom Grid World Environments”
“Train Reinforcement Learning Agent in Basic Grid World”

Introduced in R2019a
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createlntegratedEnv

Create Simulink model for reinforcement learning, using reference model as environment
Syntax

env = createlntegratedEnv(refModel, newModel)
[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( )

[ 1 = createIntegratedEnv(  ,Name,Value)

Description

env = createlntegratedEnv(refModel, newModel) creates a Simulink model with the name
specified by newModel and returns a reinforcement learning environment object, env, for this model.
The new model contains an RL Agent block and uses the reference model refModel as a
reinforcement learning environment for training the agent specified by this block.

[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( ) returns the block path
to the RL Agent block in the new model and the observation and action data specifications for the
reference model, obsInfo and actInfo, respectively.

[ ] = createIntegratedEnv( ,Name, Value) creates a model and environment interface
using port, observation, and action information specified using one or more Name, Value pair
arguments.

Examples

Create Environment from a Simulink Model

This example shows how to use createIntegratedEnv to create an environment object starting
from a Simulink model implementing the system that the agent needs to interact with. Such a system
is often referred to as plant, open loop system or reference system, while the whole (integrated)
system including the agent is often referred to as the closed loop system.

For this example, use the flying robot model described in “Train DDPG Agent to Control Flying
Robot” as the reference (open loop) system.

Open the flying robot model.
open_system('rlFlyingRobotEnv');
Initialize state variables and sample time.
% initial model state variables
thetal = 0;

X0 -15;
yo = 0;
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Create the Simulink model IntegratedEnv containing the flying robot model connected in a closed
loop to the agent block. The function also returns the reinforcement learning environment object
env, to be used for training.

env=createIntegratedEnv('rlFlyingRobotEnv', 'IntegratedEnv")

env =
SimulinkEnvWithAgent with properties:

Model: "IntegratedEnv"
AgentBlock: "IntegratedEnv/RL Agent"
ResetFcn: []
UseFastRestart: 'on'

The function can also return the block path to the RL Agent block in the new integrated model, as
well as the observation and action data specifications for the reference model.

[~,agentBlk,observationInfo,actionInfo]l=createIntegratedEnv('rlFlyingRobotEnv"', 'IntegratedEnv")

agentBlk =
'"IntegratedEnv/RL Agent'

observationInfo =
riNumericSpec with properties:

LowerLimit: -Inf
UpperLimit: Inf
Name: "observation"
Description: [0x0 string]
Dimension: [7 1]
DataType: "double"
actionInfo =
riNumericSpec with properties:
LowerLimit: -Inf
UpperLimit: Inf
Name: "action"
Description: [0x0 string]
Dimension: [2 1]
DataType: "double"

This is useful in cases in which you need to modify descriptions, limits or names in
observationInfo and actionInfo and later create an environment from the integrated model
IntegratedEnv, using the function rlSimulinkEnv.

Create an Integrated Environment with Specified Port Names
This example shows how to call the function createIntegratedEnv with using Name and Value

pairs to create an integrated (closed loop) Simulink environment and the corresponding environment
object.
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The first argument of the createIntegratedEnv function is the name of the reference Simulink
model which contains the system that the agent needs to interact with. Such a system is often
referred to as plant, or open loop system. For this example, the reference system is the model of a
water tank.

Open the open loop water tank model.
open_system('rlWatertankOpenloop.slx');

Set the sampling time of the discrete integrator block used to generate the observation, so the
simulation can run.

Since the input port is called u (instead of action), and the first and third output ports are called y
and stop (instead of observation and isdone), use Name and Value pairs to specify the correct
name when calling the function createIntegratedEnv.

env=createIntegratedEnv('rlWatertankOpenloop', 'IntegratedWatertank', 'ActionPortName', 'u', 'Observ:

env =
SimulinkEnvWithAgent with properties:

Model: "IntegratedWatertank"
AgentBlock: "IntegratedWatertank/RL Agent"
ResetFcn: []
UseFastRestart: 'on'

This creates the new model IntegratedWatertank which contains the reference model connected
in a closed loop to the agent block. The function also returns the reinforcement learning environment
object env, to be used for training.

Input Arguments

refModel — Reference model name
string | character vector

Reference model name, specified as a string or character vector. This is the Simulink model
implementing the system that the agent needs to interact with. Such a system is often referred to as
plant, open loop system or reference system, while the whole (integrated) system including the agent
is often referred to as the closed loop system. The new Simulink model uses this reference model as
the dynamic model of the environment for reinforcement learning.

newModel — New model name
string | character vector

New model name, specified as a string or character vector. createIntegratedEnv creates a
Simulink model with this name, but does not save the model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.
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Example: 'IsDonePortName"', "stopSim" sets the stopSim port of the reference model as the
source of the isdone signal.

ObservationPortName — Reference model observation output port name
"observation" (default) | string | character vector

Reference model observation output port name, specified as the comma-separated pair consisting of
'ObservationPortName' and a string or character vector. Specify ObservationPortName when
the name of the observation output port of the reference model is not "observation".

ActionPortName — Reference model action input port name
"action" (default) | string | character vector

Reference model action input port name, specified as the comma-separated pair consisting of
"ActionPortName' and a string or character vector. Specify ActionPortName when the name of
the action input port of the reference model is not "action".

RewardPortName — Reference model reward output port name
"reward" (default) | string | character vector

Reference model reward output port name, specified as the comma-separated pair consisting of
'RewardPortName' and a string or character vector. Specify RewardPortName when the name of
the reward output port of the reference model is not "reward".

IsDonePortName — Reference model done flag output port name
"isdone" (default) | string | character vector

Reference model done flag output port name, specified as the comma-separated pair consisting of
'IsDonePortName' and a string or character vector. Specify IsDonePortName when the name of
the done flag output port of the reference model is not "isdone".

ObservationBusElementNames — Names of observation bus leaf elements
string array

Names of observation bus leaf elements for which to create specifications, specified as a string array.
To create observation specifications for a subset of the elements in a Simulink bus object, specify
BusElementNames. If you do not specify BusElementNames, a data specification is created for each
leaf element in the bus.

ObservationBusElementNames is applicable only when the observation output port is a bus signal.

Example: 'ObservationBusElementNames',["sin" "cos"] creates specifications for the
observation bus elements with the names "sin" and "cos".

ObservationDiscreteElements — Finite values for observation specifications
cell array of name-value pairs

Finite values for discrete observation specification elements, specified as the comma-separated pair
consisting of 'ObservationDiscreteElements' and a cell array of name-value pairs. Each name-
value pair consists of an element name and an array of discrete values.

If the observation output port of the reference model is:

* A bus signal, specify the name of one of the leaf elements of the bus specified in by
ObservationBusElementNames
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* Nonbus signal, specify the name of the observation port, as specified by ObservationPortName
The specified discrete values must be castable to the data type of the specified observation signal.

If you do not specify discrete values for an observation specification element, the element is
continuous.

Example: 'ObservationDiscretElements', {'observation',[-1 0 1]} specifies discrete
values for a nonbus observation signal with default port name observation.

Example: 'ObservationDiscretElements',{'gear',[-1 0 1 2], 'direction',[1 2 3 4]}
specifies discrete values for the 'gear' and 'direction’ leaf elements of a bus action signal.

ActionDiscreteElements — Finite values for action specifications
cell array of name-value pairs

Finite values for discrete action specification elements, specified as the comma-separated pair
consisting of 'ActionDiscreteElements' and a cell array of name-value pairs. Each name-value
pair consists of an element name and an array of discrete values.

If the action input port of the reference model is:

* A Dbus signal, specify the name of a leaf element of the bus
* Nonbus signal, specify the name of the action port, as specified by ActionPortName

The specified discrete values must be castable to the data type of the specified action signal.

If you do not specify discrete values for an action specification element, the element is continuous.

Example: 'ActionDiscretElements',{'action',[-1 0 1]} specifies discrete values for a
nonbus action signal with default port name 'action’.

Example: 'ActionDiscretElements',{'force',[-10 0 10], 'torque',[-5 O 5]} specifies
discrete values for the 'force' and 'torque’ leaf elements of a bus action signal.

Output Arguments

env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment interface, returned as an SimulinkEnvWithAgent object.

agentBlock — Block path to the agent block
character vector

Block path to the agent block in the new model, returned as a character vector. To train an agent in
the new Simulink model, you must create an agent and specify the agent name in the RL Agent block
indicated by agentBlock.

For more information on creating agents, see “Reinforcement Learning Agents”.

obsInfo — Observation data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Observation data specifications, returned as one of the following:
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* rlNumericSpec object for a single continuous observation specification
* rlFiniteSetSpec object for a single discrete observation specification
* Array of data specification objects for multiple specifications

actInfo — Action data specifications
rliNumericSpec object | rLFiniteSetSpec object | array of data specification objects

Action data specifications, returned as one of the following:

* rlNumericSpec object for a single continuous action specification
* rlFiniteSetSpec object for a single discrete action specification
» Array of data specification objects for multiple action specifications

See Also

Blocks
RL Agent

Functions
bus2RLSpec | rlFiniteSetSpec | riNumericSpec | rlSimulinkEnv

Topics
“Create Simulink Environments for Reinforcement Learning”

Introduced in R2019a
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Create Markov decision process model

Syntax

MDP = createMDP(states,actions)

Description

MDP = createMDP(states,actions) creates a Markov decision process model with the specified
states and actions.

Examples

Create MDP Model

Create an MDP model with eight states and two possible actions.
MDP = createMDP(8,["up";"down"]);

Specify the state transitions and their associated rewards.

% State 1 Transition and Reward

MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;
% State 2 Transition and Reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 Transition and Reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 Transition and Reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 Transition and Reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
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% State 6 Transition and Reward

MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 Transition and Reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 Transition and Reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify the terminal states of the model.

MDP.TerminalStates = ["s7";"s8"];

Input Arguments

states — Model states
positive integer | string vector

Model states, specified as one of the following:

» Positive integer — Specify the number of model states. In this case, each state has a default name,
such as "s1" for the first state.

* String vector — Specify the state names. In this case, the total number of states is equal to the
length of the vector.

actions — Model actions
positive integer | string vector

Model actions, specified as one of the following:

* Positive integer — Specify the number of model actions. In this case, each action has a default
name, such as "al" for the first action.

» String vector — Specify the action names. In this case, the total number of actions is equal to the
length of the vector.

Output Arguments

MDP — MDP model
GenericMDP object

MDP model, returned as a GenericMDP object with the following properties.

CurrentState — Name of the current state
string
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Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector with length equal to the number of states.

Actions — Action names
string vector

Action names, specified as a string vector with length equal to the number of actions.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible movements of the
agent in an environment. State transition matrix T is a probability matrix that indicates how likely the
agent will move from the current state s to any possible next state s' by performing action a. T is an
S-by-S-by-A array, where S is the number of states and A is the number of actions. It is given by:

T(s,s’,a) = probability(s'|s,a).

The sum of the transition probabilities out from a nonterminal state s following a given action must
sum up to one. Therefore, all stochastic transitions out of a given state must be specified at the same
time.

For example, to indicate that in state 1 following action 4 there is an equal probability of moving to
states 2 or 3, use the following:

MDP.T(1,[2 3]1,4) = [0.5 0.5];

You can also specify that, following an action, there is some probability of remaining in the same
state. For example:

MDP.T(1,[1 2 3 4]1,1) = [0.25 0.25 0.25 0.25];

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, which determines how much reward the agent
receives after performing an action in the environment. R has the same shape and size as state
transition matrix T. The reward for moving from state s to state s' by performing action a is given
by:

r = R(s,s,a).

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector of state names.
See Also
createGridworld | rIMDPENnv

Topics
“Train Reinforcement Learning Agent in MDP Environment”
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Introduced in R2019a
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generatePolicyFunction

Package: rl.agent

Create function that evaluates trained policy of reinforcement learning agent

Syntax

generatePolicyFunction(agent)
generatePolicyFunction(agent,Name,Value)

Description

generatePolicyFunction(agent) creates a function that evaluates the learned policy of the
specified agent using the default function, policy, and data file names. After generating the policy
evaluation function, you can:

* Generate code for the function using MATLAB Coder™ or GPU Coder™. For more information, see
“Deploy Trained Reinforcement Learning Policies”.

* Simulate the trained agent in Simulink using a MATLAB Function block.
generatePolicyFunction(agent,Name,Value) specifies the function, policy, and data file names

using one or more name-value pair arguments.

Examples

Create Policy Evaluation Function for PG Agent
This example shows how to create a policy evaluation function for a PG Agent.

First, create and train a reinforcement learning agent. For this example, load the PG agent trained in
“Train PG Agent to Balance Cart-Pole System”:

load('MATLABCartpolePG.mat', 'agent')
Then, create a policy evaluation function for this agent using default names:
generatePolicyFunction(agent);

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor.

View the generated function.
type evaluatePolicy.m

function actionl = evaluatePolicy(observationl)
s#codegen

% Reinforcement Learning Toolbox
Generated on: 29-Feb-2020 09:51:55

%
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actionSet = [-10 10];
% Select action from sampled probabilities
probabilities = localEvaluate(observationl);
% Normalize the probabilities
p = probabilities(:)'/sum(probabilities);
% Determine which action to take
edges = min([0 cumsum(p)],1);
edges(end) = 1;
[~,actionIndex] = histc(rand(1l,1),edges); %#ok<HISTC>
actionl = actionSet(actionIndex);
end
%% Local Functions
function probabilities = localEvaluate(observationl)
persistent policy
if isempty(policy)
policy = coder.loadDeepLearningNetwork('agentData.mat', 'policy');
end
probabilities = predict(policy,observationl);
end

For a given observation, the policy function evaluates a probability for each potential action using the
actor network. Then, the policy function randomly selects an action based on these probabilities.

Since the actor network for this PG agent has a single input layer and single output layer, you can
generate code for this network using the Deep Learning Toolbox™ generation functionality. For more
information, see “Deploy Trained Reinforcement Learning Policies”.

Create Policy Evaluation Function for Q-Learning Agent
This example shows how to create a policy evaluation function for a Q-Learning Agent.

For this example, load the Q-learning agent trained in “Train Reinforcement Learning Agent in Basic
Grid World”

load('basicGWQAgent.mat', 'qAgent')
Create a policy evaluation function for this agent and specify the name of the agent data file.
generatePolicyFunction(qAgent, '"MATFileName', "policyFile.mat")

This command creates the evaluatePolicy.m file, which contains the policy function, and the
policyFile.mat file, which contains the trained Q table value function.

View the generated function.
type evaluatePolicy.m

function actionl = evaluatePolicy(observationl)
s#codegen

Reinforcement Learning Toolbox
Generated on: 29-Feb-2020 09:44:06

%
%

actionSet = [1;2;3;4];
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numActions = numel(actionSet);
g = zeros(1l,numActions);
for i = l:numActions
g(i) = localEvaluate(observationl,actionSet(1i));
end
[~,actionIndex] = max(q);
actionl = actionSet(actionIndex);
end
%% Local Functions
function g = localEvaluate(observationl,action)
persistent policy
if isempty(policy)
s = coder.load('policyFile.mat"', 'policy');
policy = s.policy;
end
actionSet = [1;2;3;4];
observationSet = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;251;
actionIndex = rl.codegen.getElementIndex(actionSet,action);
observationIndex = rl.codegen.getElementIndex(observationSet,observationl);
g = policy(observationIndex,actionIndex);
end

For a given observation, the policy function looks up the value function for each potential action using
the Q table. Then, the policy function selects the action for which the value function is greatest.

You can generate code for this policy function using MATLAB® Coder™

For more information, see “Deploy Trained Reinforcement Learning Policies”
y

Input Arguments

agent — Trained reinforcement learning agent
reinforcement learning agent object

Trained reinforcement learning agent, specified as one of the following:

* rlQAgent object

* rlSARSAAgent object

* rlDDPGAgent object

* rlTD3Agent object

* rlACAgent object

* rlPGAgent object that estimates a baseline value function using a critic

Since Deep Learning Toolbox™ code generation and prediction functionality do not support deep

neural networks with more than one input layer, generatePolicyFunction does not support the

following agent configurations.

* DON agent with deep neural network critic representations

* Any agent with deep neural network actor or critic representations with multiple observation
input layers

To train your agent, use the train function.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'FunctionName', "computeAction"

FunctionName — Name of the generated function
"evaluatePolicy' (default) | string | character vector

Name of the generated function, specified as the name-value pair consisting of ' FunctionName' and
a string or character vector.

PolicyName — Name of the policy variable within the generated function
'policy' (default) | string | character vector

Name of the policy variable within the generated function, specified as the name-value pair consisting
of 'PolicyName' and a string or character vector.

MATFileName — Name of agent data file
'agentData’' (default) | string | character vector

Name of the agent data file, specified as the name-value pair consisting of 'MATFileName' and a
string or character vector.

See Also
train

Topics

“Train Reinforcement Learning Agents”
“Reinforcement Learning Agents”

“Create Policy and Value Function Representations”
“Deploy Trained Reinforcement Learning Policies”

Introduced in R2019a
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getAction

Obtain action from agent or actor representation given environment observations

Syntax
agentAction = getAction(agent,obs)
actorAction = getAction(actorRep,obs)

[actorAction,nextState] = getAction(actorRep,obs)

Description

Agent

agentAction = getAction(agent,obs) returns the action derived from the policy of a
reinforcement learning agent given environment observations.

Actor Representation

actorAction = getAction(actorRep,obs) returns the action derived from policy
representation actorRep given environment observations obs.

[actorAction,nextState] = getAction(actorRep,obs) returns the updated state of the
actor representation when the actor uses a recurrent neural network as a function approximator.

Examples

Get Actions from Agent

Create an environment interface and obtain its observation and action specifications. For this
environment load the predefined environment used for the discrete cart-pole system.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

statePath = [
imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state"')
fullyConnectedLayer (24, 'Name', 'CriticStateFCl')
reluLayer('Name', 'CriticRelul"')
fullyConnectedLayer(24, 'Name', 'CriticStateFC2')];

actionPath = [
imagelInputLayer([1 1 1], 'Normalization', 'none', 'Name','action")
fullyConnectedLayer(24, 'Name', 'CriticActionFC1l')];

commonPath = [
additionLayer(2, 'Name', 'add")
reluLayer('Name', 'CriticCommonRelu")
fullyConnectedLayer(1, 'Name', 'output')];

criticNetwork = layerGraph(statePath);
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criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectlLayers(criticNetwork, 'CriticStateFC2', 'add/inl");
criticNetwork = connectLayers(criticNetwork, 'CriticActionFCl', 'add/in2");

Create a representation for the critic.

criticOpts = rlRepresentationOptions('LearnRate',0.01, 'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'}, 'Action',{'action'},criticOpts);

Specify agent options, and create a DQN agent using the environment and critic.

agentOpts = rlDQNAgentOptions(...
'"UseDoubleDQN', false,
'TargetUpdateMethod', "periodic",
'TargetUpdateFrequency',4, ...
'"ExperienceBufferLength', 100000,
'DiscountFactor',0.99,
'MiniBatchSize',256);

agent = rlDQNAgent(critic,agentOpts);

Obtain a discrete action from the agent for a single observation. For this example, use a random
observation array.

act = getAction(agent,{rand(4,1)})
act = 10

You can also obtain actions for a batch of observations. For example, obtain actions for a batch of 10
observations.

actBatch = getAction(agent,{rand(4,1,10)});
size(actBatch)

ans = 1x2
1 10

actBatch contains one action for each observation in the batch, with each action being one of the
possible discrete actions.

Get Action from Deterministic Actor

Create observation and action information. You can also obtain these specifications from an
environment.

obsinfo = rlNumericSpec([4 1]1);
actinfo = rlNumericSpec([2 1]1);
numObs = obsinfo.Dimension(1);
numAct = actinfo.Dimension(1);

Create a recurrent deep neural network for the actor.

net = [imagelnputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state")
fullyConnectedLayer (10, 'Name', 'fcl')
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reluLayer('Name', 'relul')
fullyConnectedlLayer(20, 'Name', 'CriticStateFC2")
fullyConnectedLayer (numAct, 'Name', 'action')
tanhLayer('Name', 'tanhl')];

Create a deterministic actor representation for the network.
actorOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(net,obsinfo,actinfo, ...
'Observation',{'state'}, 'Action',{'tanhl'});

Obtain an action from this actor for a random batch of 20 observations.

act getAction(actor,{rand(4,1,10)})

act = 1x1 cell array
{2x1x10 single}

act contains the two computed actions for all 10 observations in the batch.

Input Arguments

agent — Reinforcement learning agent
rlQAgent | rtSARSAAgent | rlDQNAgent | rlPGAgent | rIDDPGAgent | rLlTD3Agent | rLACAgent
| rLPPOAgent

Reinforcement learning agent, specified as one of the following objects:

* rlQAgent

* rlSARSAAgent
* rlDQNAgent

* rlPGAgent

* rlDDPGAgent
* rlTD3Agent

* rlACAgent

* rlPPOAgent

actorRep — Actor representation
riDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation, specified as either an rlDeterministicActorRepresentation or
rlStochasticActorRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are M,-by-Lz-by-Lg, where:
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* M, corresponds to the dimensions of the associated observation input channel.

* Ly is the batch size. To specify a single observation, set Lz = 1. To specify a batch of observations,
specify Lg > 1. If valueRep or gValueRep has multiple observation input channels, then Lz must
be the same for all elements of obs.

» Lg specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then Lg = 1. If valueRep or qValueRep has multiple
observation input channels, then Lg must be the same for all elements of obs.

Lp and Lg must be the same for both act and obs.

Output Arguments

agentAction — Action value from agent
array

Action value from agent, returned as an array with dimensions M,-by-Lg-by-Lg, where:

* M, corresponds to the dimensions of the associated action specification.
* L is the batch size.

* Lgis the sequence length for recurrent neural networks. If the actor and critic in agent do not
use recurrent neural networks, then Lg = 1.

Note When agents such as rlACAgent, rlPGAgent, or rLPPOAgent use an
rlStochasticActorRepresentation actor with a continuous action space, the constraints set by
the action specification are not enforced by the agent. In these cases, you must enforce action space
constraints within the environment.

actorAction — Action value from actor representation
single-element cell array

Action value from actor representation, returned as a single-element cell array that contains an array
of dimensions M,-by-Lg-by-Lg, where:

* M, corresponds to the dimensions of the action specification.

* Lgis the batch size.

* Lgis the sequence length for a recurrent neural network. If actorRep does not use a recurrent
neural network, then Lg = 1.

Note rlStochasticActorRepresentation actors with continuous action spaces do not enforce
constraints set by the action specification. In these cases, you must enforce action space constraints
within the environment.

nextState — Actor representation updated state
cell array

Actor representation updated state, returned as a cell array. If actorRep does not use a recurrent
neural network, then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:
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valueRep = setState(actorRep,state);

See Also
getMaxQValue | getValue
Topics

“Custom Agents”
“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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getActioninfo

Obtain action data specifications from reinforcement learning environment or agent

Syntax

actInfo = getActionInfo(env)
actInfo = getActionInfo(agent)

Description

actInfo = getActionInfo(env) extracts action information from reinforcement learning
environment env.

actInfo = getActionInfo(agent) extracts action information from reinforcement learning
agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning Environment
Extract action and observation information that you can use to create other environments or agents.

The reinforcement learning environment for this example is the simple longitudinal dynamics for ego
car and lead car. The training goal is to make the ego car travel at a set velocity while maintaining a
safe distance from lead car by controlling longitudinal acceleration (and braking). This example uses
the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive Control”
(Model Predictive Control Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlLACCMdLl"';

open_system(mdl) ;

agentblk = [mdl '/RL Agent'];

% create the observation info

obsInfo = riNumericSpec([3 1], 'LowerLimit',-inf*ones(3,1), 'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';

obsInfo.Description = 'information on velocity error and ego velocity';
% action Info

actInfo = rlNumericSpec([1 1], 'LowerLimit',-3, 'UpperLimit',2);
actInfo.Name = 'acceleration';

% define environment

env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env =
SimulinkEnvWithAgent with properties:

Model: "rlACCMd1l"
AgentBlock: "rlACCMdl/RL Agent"
ResetFcn: []
UseFastRestart: 'on'
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The reinforcement learning environment env is a SimulinkWithAgent object with the above
properties.

Extract the action and observation information from the reinforcement learning environment env.

actInfoExt

getActionInfo(env)

actInfoExt =
riNumericSpec with properties:

LowerLimit: -3
UpperLimit: 2
Name: "acceleration"
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt =
riNumericSpec with properties:

LowerLimit: [3x1 doublel]
UpperLimit: [3x1 double]
Name: "observations"
Description: "information on velocity error and ego velocity"
Dimension: [3 1]
DataType: "double"

The action information contains acceleration values while the observation information contains the
velocity and velocity error values of the ego vehicle.

Input Arguments

env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the action information has to be extracted, specified
as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Environments
for Reinforcement Learning”.

agent — Reinforcement learning agent
rlQAgent object | rLSARSAAgent object | rIDQNAgent object | rIDDPGAgent object | rlPGAgent
object | rLACAgent object

Reinforcement learning agent from which the action information has to be extracted, specified as one
of the following objects:

* rlQAgent
* rlSARSAAgent
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* rlDQNAgent
* rlDDPGAgent
* rlPGAgent

* rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning Agents”.

Output Arguments

actInfo — Action data specifications
array of rUNumericSpec objects | array of rlLFiniteSetSpec objects

Action data specifications extracted from the reinforcement learning environment, returned as an
array of one of the following:

* rlNumericSpec objects

* rlFiniteSetSpec objects

* A mix of riNumericSpec and rlFiniteSetSpec objects

See Also
getObservationInfo | rlACAgent | rIDDPGAgent | rlDQNAgent | rlFiniteSetSpec |
riNumericSpec | rtPGAgent | rLQAgent | rlSARSAAgent

Topics
“Create Simulink Environments for Reinforcement Learning”
“Reinforcement Learning Agents”

Introduced in R2019a
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getActor

Package: rl.agent

Get actor representation from reinforcement learning agent

Syntax

actor = getActor(agent)

Description
actor = getActor(agent) returns the actor representation object for the specified reinforcement

learning agent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getlLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformOutput', false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments

agent — Reinforcement learning agent
rIDDPGAgent object | rLTD3Agent object | rLPGAgent object | rLACAgent object | rLPPOAgent
object

Reinforcement learning agent that contains an actor representation, specified as one of the following:
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* rlDDPGAgent object
* rlTD3Agent object
* rlACAgent object

* rlPGAgent object

* rlPPOAgent object

Output Arguments

actor — Actor representation
riDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation object, specified as one of the following:

* rlDeterministicActorRepresentation object — Returned when agent is an rlDDPGAgent
or rlTD3Agent object

* rlStochasticActorRepresentation object — Returned when agent is an rtACAgent,
rlPGAgent, or rLPPOAgent object

See Also
getCritic | getLearnableParameters | setActor | setCritic | setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getCritic
Package: rl.agent

Get critic representation from reinforcement learning agent

Syntax

critic = getCritic(agent)

Description
critic = getCritic(agent) returns the critic representation object for the specified

reinforcement learning agent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getlLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformOutput', false);

Set the parameter values of the critic to the new modified values.

critic = setlLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Input Arguments

agent — Reinforcement learning agent
rlQAgent object | rLSARSAAgent object | rLDQNAgent object | riDDPGAgent object | rlTD3Agent
object | rLPGAgent object | rLACAgent object | rLPPOAgent object

Reinforcement learning agent that contains a critic representation, specified as one of the following:
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* rlQAgent object

* rlSARSAAgent object

* rlDQNAgent object

* rlDDPGAgent object

* rlTD3Agent object

* rlACAgent object

* rlPPOAgent object

* rlPGAgent object that estimates a baseline value function using a critic

Output Arguments

critic — Critic representation
rlValueRepresentation object | rlQValueRepresentation object | two-element row vector of
rlQValueRepresentation objects

Critic representation object, returned as one of the following:

* rlValueRepresentation object — Returned when agent is an rlACAgent, rlPGAgent, or
rlPPOAgent object

* rlQValueRepresentation object — Returned when agent is an rlQAgent, rlSARSAAgent,
rlDQNAgent, rlDDPGAgent, or rlTD3Agent object with a single critic

* Two-element row vector of rlQValueRepresentation objects — Returned when agent is an
rlTD3Agent object with two critics

See Also
getActor | getLearnableParameters | setActor | setCritic | setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getLearnableParameters

Package: rl.representation

Obtain learnable parameter values from policy or value function representation

Syntax

val = getLearnableParameters(rep)

Description

val = getlLearnableParameters(rep) returns the values of the learnable parameters from the
reinforcement learning policy or value function representation rep.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getlLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformOutput', false);

Set the parameter values of the critic to the new modified values.

critic = setlLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')
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Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getlLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformQutput', false);

Set the parameter values of the actor to the new modified values.

actor = setlLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments

rep — Policy or value function representation
rlValueRepresentation object | rltQValueRepresentation object |
riDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Policy or value function representation, specified as one of the following:

* rlValueRepresentation object — Value function representation
* rlQValueRepresentation object — Q-value function representation

* rlDeterministicActorRepresentation object — Actor representation with deterministic
actions

* rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods:

* Create a representation using the corresponding representation object.
* Obtain the existing value function representation from an agent using getCritic
* Obtain the existing policy representation from an agent using getActor.

Output Arguments

val — Learnable parameter values
cell array

Learnable parameter values for the representation object, returned as a cell array. You can modify

these parameter values and set them in the original agent or a different agent using the
setLearnableParameters function.
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Compatibility Considerations

getLearnableParameterValues is now getLearnableParameters
Behavior changed in R2020a

getlLearnableParameterValues is now getLearnableParameters. To update your code, change
the function name from getlLearnableParameterValues to getLearnableParameters. The
syntaxes are equivalent.

See Also
getActor | getCritic | setActor|setCritic | setlLearnableParameters
Topics

“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getMaxQValue

Obtain maximum state-value function estimate for Q-value function representation with discrete
action space

Syntax

[maxQ,maxActionIndex] = getValue(gValueRep,obs)
[maxQ,maxActionIndex,state] = getValue( )
Description

[maxQ,maxActionIndex] = getValue(gValueRep,obs) returns the maximum estimated state-
value function for Q-value function representation qValueRep given environment observations obs.
getMaxQValue determines the discrete action for which the Q-value estimate is greatest and returns
that Q value (maxQ) and the corresponding action index (maxActionIndex).

[maxQ,maxActionIndex,state] = getValue( ) returns the state of the representation. Use
this syntax when qValueRep is a recurrent neural network.

Examples

Obtain Maximum Q-Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for a multi-output Q-value function representation.

criticNetwork = [
imageInputLayer([4 1 1], 'Normalization', 'none','Name', 'state")
fullyConnectedLayer (50, 'Name', 'CriticStateFCl')
reluLayer('Name', 'CriticRelul"')
fullyConnectedLayer(20, 'Name', 'CriticStateFC2")
reluLayer('Name', 'CriticRelu2"')
fullyConnectedLayer(numDiscreteAct, 'Name', 'output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation', 'state',criticOptions);

Obtain value function estimates for each possible discrete action using random observations.

obs
val

rand(4,1);
getValue(critic,{obs})
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val = 2x1 single column vector

(o)

.0139
.1851

(o)

val contains two value function estimates, one for each possible discrete action.
You can obtain the maximum Q-value function estimate across all the discrete actions.

[maxVal,maxIndex] = getMaxQValue(critic, {obs})

maxVal = single
0.0139

maxIndex = 1
maxVal corresponds to the maximum entry in val.

You can also obtain maximum Q-value function estimates for a batch of observations. For example,
obtain value function estimates for a batch of 10 observations.

[batchVal,batchIndex] = getMaxQValue(critic,{rand(4,1,10)});

Input Arguments

gValueRep — Q-value representation
rlQValueRepresentation object

Q-value representation, specified as an rlQValueRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are M,-by-Lz-by-Lg, where:

* M, corresponds to the dimensions of the associated observation input channel.

* Lpgis the batch size. To specify a single observation, set Lz = 1. To specify a batch of observations,
specify L > 1. If valueRep or gValueRep has multiple observation input channels, then Lz must
be the same for all elements of obs.

* L specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then Lg = 1. If valueRep or gqValueRep has multiple
observation input channels, then Lg must be the same for all elements of obs.

Lp and Lg must be the same for both act and obs.

Output Arguments

maxQ — Maximum Q-value estimate
array
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Maximum Q-value estimate across all possible discrete actions, returned as a 1-by-Lg-by-Lg array,
where:

* Ljgis the batch size.

» Lg specifies the sequence length for a recurrent neural network. If gValueRep does not use a
recurrent neural network, then Lg = 1.

maxActionIndex — Action index
array

Action index corresponding to the maximum Q value, returned as a 1-by-Lg-by-Lg array, where:

* Lgis the batch size.

* L specifies the sequence length for a recurrent neural network. If qValueRep does not use a
recurrent neural network, then Lg = 1.

state — Representation state
cell array

Representation state, returned as a cell array. If qValueRep does not use a recurrent neural network,
then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:

valueRep = setState(qValueRep,state);

See Also

getAction | getValue

Topics

“Custom Agents”

“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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getObservationinfo

Obtain observation data specifications from reinforcement learning environment or agent

Syntax

obsInfo = getObservationInfo(env)
obsInfo = getObservationInfo(agent)

Description

obsInfo = getObservationInfo(env) extracts observation information from reinforcement
learning environment env.

obsInfo = getObservationInfo(agent) extracts observation information from reinforcement
learning agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning Environment
Extract action and observation information that you can use to create other environments or agents.

The reinforcement learning environment for this example is the simple longitudinal dynamics for ego
car and lead car. The training goal is to make the ego car travel at a set velocity while maintaining a
safe distance from lead car by controlling longitudinal acceleration (and braking). This example uses
the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive Control”
(Model Predictive Control Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlLACCMdLl"';

open_system(mdl) ;

agentblk = [mdl '/RL Agent'];

% create the observation info

obsInfo = riNumericSpec([3 1], 'LowerLimit',-inf*ones(3,1), 'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';

obsInfo.Description = 'information on velocity error and ego velocity';
% action Info

actInfo = rlNumericSpec([1 1], 'LowerLimit', -3, 'UpperLimit',2);
actInfo.Name = 'acceleration';

% define environment

env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env =
SimulinkEnvWithAgent with properties:

Model: "rlACCMd1l"
AgentBlock: "rlACCMdl/RL Agent"
ResetFcn: []
UseFastRestart: 'on'
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The reinforcement learning environment env is a SimulinkWithAgent object with the above
properties.

Extract the action and observation information from the reinforcement learning environment env.

actInfoExt

getActionInfo(env)

actInfoExt =
riNumericSpec with properties:

LowerLimit: -3
UpperLimit: 2
Name: "acceleration"
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt =
riNumericSpec with properties:

LowerLimit: [3x1 doublel]
UpperLimit: [3x1 double]
Name: "observations"
Description: "information on velocity error and ego velocity"
Dimension: [3 1]
DataType: "double"

The action information contains acceleration values while the observation information contains the
velocity and velocity error values of the ego vehicle.

Input Arguments

env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the observation information has to be extracted,
specified as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Environments
for Reinforcement Learning”.

agent — Reinforcement learning agent
rlQAgent object | rLSARSAAgent object | rIDQNAgent object | rIDDPGAgent object | rlPGAgent
object | rLACAgent object

Reinforcement learning agent from which the observation information has to be extracted, specified
as one of the following objects:

* rlQAgent
* rlSARSAAgent

1-43



1 Functions

1-44

* rlDQNAgent
* rlDDPGAgent
* rlPGAgent

* rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning Agents”.

Output Arguments

obsInfo — Observation data specifications
array of rUNumericSpec objects | array of rlLFiniteSetSpec objects

Observation data specifications extracted from the reinforcement learning environment, returned as
an array of one of the following:

* rlNumericSpec objects

* rlFiniteSetSpec objects
* A mix of riNumericSpec and rlFiniteSetSpec objects

See Also
getActionInfo | rlACAgent | rlDDPGAgent | rlDQNAgent | rlFiniteSetSpec |
riNumericSpec | rtPGAgent | rLQAgent | rlSARSAAgent

Topics

“Create Simulink Environments for Reinforcement Learning”
“Reinforcement Learning Agents”

Introduced in R2019a
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Obtain estimated value function representation

Syntax

value = getValue(valueRep,obs)
value = getValue(qValueRep,obs)
value = getValue(qValueRep,obs,act)
[value,state] = getValue( )

Description

value = getValue(valueRep,obs) returns the estimated value function for the state value
function representation valueRep given environment observations obs.

value = getValue(qValueRep,obs) returns the estimated state-action value functions for the
multiple Q-value function representation qValueRep given environment observations obs. In this
case, qValueRep has as many outputs as there are possible discrete actions, and getValue returns
the state-value function for each action.

value = getValue(qValueRep,obs,act) returns the estimated state-action value function for
the single-output Q-value function representation qValueRep given environment observations obs
and actions act. In this case, getValue returns the state-value function for the given observation
and action inputs.

[value,state] = getValue( ) returns the state of the representation. Use this syntax when
valueRep or qValueRep is a recurrent neural network.

Examples

Obtain State Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1);
numbDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for the critic.

criticNetwork = [
imageInputLayer([4 1 1], 'Normalization', 'none','Name', 'state")
fullyConnectedLayer(8, 'Name', 'fc')
reluLayer('Name', 'relu')
fullyConnectedLayer(1, 'Name', 'output')];

Create a value function representation object for the critic.
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criticOptions = rlRepresentationOptions('LearnRate',le-2, 'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,...
'Observation', 'state',criticOptions);

Obtain a value function estimate for a random single observation. Use an observation array with the
same dimensions as the observation specification.

val getValue(critic,{rand(4,1)})

val = single
-0.0899

You can also obtain value function estimates for a batch of observations. For example obtain value
functions for a batch of 20 observations.

batchVal = getValue(critic,{rand(4,1,20)});
size(batchVval)

ans = 1x2

1 20

valBatch contains one value function estimate for each observation in the batch.

Obtain Multi-Output Q-Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for a multi-output Q-value function representation.

criticNetwork = [
imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state"')
fullyConnectedLayer (50, 'Name', 'CriticStateFCl')
reluLayer('Name', 'CriticRelul"')
fullyConnectedLayer(20, 'Name', 'CriticStateFC2")
reluLayer('Name', 'CriticRelu2"')
fullyConnectedLayer(numDiscreteAct, 'Name', 'output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation', 'state',criticOptions);

Obtain value function estimates for each possible discrete action using random observations.

val getValue(critic,{rand(4,1)})

2x1 single column vector

val
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0.0139
-0.1851

val contains two value function estimates, one for each possible discrete action.

You can also obtain value function estimates for a batch of observations. For example, obtain value
function estimates for a batch of 10 observations.

batchVal = getValue(critic,{rand(4,1,10)});
size(batchVal)

ans = 1x2

2 10

batchVal contains two value function estimates for each observation in the batch.

Obtain Single-Output Q-Value Function Estimates

Create observation specifications for two observation input channels.
obsinfo = [rlNumericSpec([8 3]), rlNumericSpec([4 1]1)1;
Create action specification.

actinfo = rlNumericSpec([2 11);

Create a deep neural network for the critic. This network has three input channels (two for
observations and one for actions).

observationPathl = [
imagelInputlLayer([8 3 1], 'Normalization', 'none', 'Name', 'statel')
fullyConnectedLayer(10, 'Name', 'fcl')
additionLayer(3, 'Name', 'add")
reluLayer('Name', 'relul"')
fullyConnectedLayer (10, 'Name', 'fc4"')
reluLayer('Name', 'relu2')
fullyConnectedLayer(1l, 'Name', 'fc5')1;

observationPath2 = [
imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state2"')
fullyConnectedLayer(10, 'Name','fc2')];

actionPath = [
imagelInputlLayer([2 1 1], 'Normalization', 'none', 'Name','action');
fullyConnectedLayer (10, 'Name', 'fc3')];

net = layerGraph(observationPathl);

net = addLayers(net,observationPath2);
net = addLayers(net,actionPath);

net = connectlLayers(net,'fc2','add/in2");
net = connectlLayers(net,'fc3','add/in3"');

Create the critic representation with this network.

¢ = rlQValueRepresentation(net,obsinfo,actinfo,...
'Observation', {'statel', 'state2'}, 'Action',{'action'});
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Create random observation set of batch size 64 for each channel.

batchobs chl
batchobs ch2

rand(8,3,64);
rand(4,1,64);

Create random action set of batch size 64.
batchact = rand(2,1,64,1);
Obtain the state-action value function estimate for the batch of observations and actions.

gvalue = getValue(c,{batchobs chl,batchobs ch2},{batchact});

Input Arguments

valueRep — Value function representation
rlValueRepresentation object

Value function representation, specified as an rlValueRepresentation object.

gValueRep — Q-value function representation
rlQValueRepresentation object

Q-value function representation, specified as an rlQValueRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are M,-by-Lg-by-Lg, where:

* M, corresponds to the dimensions of the associated observation input channel.

* Ly is the batch size. To specify a single observation, set Lz = 1. To specify a batch of observations,
specify Lg > 1. If valueRep or gValueRep has multiple observation input channels, then Ly must
be the same for all elements of obs.

» Lg specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then Lg = 1. If valueRep or qValueRep has multiple
observation input channels, then Lg must be the same for all elements of obs.

L and Lg must be the same for both act and obs.

act — Action
single-element cell array

Action, specified as a single-element cell array that contains an array of action values.
The dimensions of this array are M,-by-Lg-by-Lg, where:

* M, corresponds to the dimensions of the associated action specification.

* Ly is the batch size. To specify a single observation, set Lz = 1. To specify a batch of observations,
specify Lg > 1.
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» Lg specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then Lg = 1.

Lp and Lg must be the same for both act and obs.

Output Arguments

value — Estimated value function
array

Estimated value function, returned as array with dimensions N-by-Lg-by-Lg, where:
* N s the number of outputs of the critic network.

+ For a state value representation (valueRep), N = 1.
* For a single-output state-action value representation (qValueRep), N = 1.

* For a multi-output state-action value representation (qValueRep), N is the number of discrete
actions.

* Lgis the batch size.
* Lgis the sequence length for a recurrent neural network.

state — Representation state
cell array

Representation state for a recurrent neural network, returned as a cell array. If valueRep or
gValueRep does not use a recurrent neural network, then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:

valueRep = setState(valueRep,state);

See Also
getAction | getMaxQValue

Topics
“Custom Agents”
“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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Create custom reinforcement learning environment template

Syntax

rlCreateEnvTemplate(className)

Description

rlCreateEnvTemplate(className) creates and opens a MATLAB script that contains a template
class representing a reinforcement learning environment. The template class contains an
implementation of a simple cart-pole balancing environment. To define your custom environment,

modify this template class. For more information, see “Create Custom MATLAB Environment from
Template”.

Examples

Create Custom Environment Template File
This example shows how to create and open a template file for a reinforcement learning environment.

For this example, name the class myEnvClass
rlCreateEnvTemplate("myEnvClass")

This function opens a MATLAB® script that contains the class. By default, this template class
describes a simple cart-pole environment.

Modify this template class, and save the file as myEnvClass.m

Input Arguments

className — Name of environment class
string | character vector

Name of environment class, specified as a string or character vector. This name defines the name of
the class and the name of the MATLAB script.

See Also

Topics
“Create MATLAB Environments for Reinforcement Learning”

Introduced in R2019a
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riPredefinedEnv

Create a predefined reinforcement learning environment

Syntax

env = rlPredefinedEnv(keyword)

Description

env = rlPredefinedEnv(keyword) takes a predefined keyword keyword representing the
environment name to create a MATLAB or Simulink reinforcement learning environment env. The
environment env models the dynamics with which the agent interacts, generating rewards and
observations in response to agent actions.

Examples

Basic Grid World Reinforcement Learning Environment

Use the predefined 'BasicGridWorld' keyword to create a basic grid world reinforcement learning
environment.

env = rlPredefinedEnv('BasicGridwWorld"')

env =
rlMDPEnv with properties:

Model: [1x1 rl.env.GridWorld]
ResetFcn: []

Continuous Double Integrator Reinforcement Learning Environment

Use the predefined 'DoubleIntegrator-Continuous' keyword to create a continuous double
integrator reinforcement learning environment.

env = rlPredefinedEnv('DoubleIntegrator-Continuous"')

env =
DoubleIntegratorContinuousAction with properties:

Gain: 1
Ts: 0.1000
MaxDistance: 5
GoalThreshold: 0.0100
Q: [2x2 double]
R: 0.0100
MaxForce: Inf
State: [2x1 double]
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You can visualize the environment using the plot function and interact with it using the reset and
step functions.

plot(env)
observation = reset(env)
observation = 2x1I
4
0
[observation, reward,isDone] = step(env,16)
(] Double Integrator Visualizer | p— ” (=l ” &3 |
1 1 I I I I 1 I I
-5 = -3 -2 =1 0 1 2 3 4 5

observation = 2x1I
4.0800
1.6000

reward = -16.5559

isDone = logical
0

Continuous Simple Pendulum Model Reinforcement Learning Environment

Use the predefined 'SimplePendulumModel-Continuous' keyword to create a continuous simple
pendulum model reinforcement learning environment.

env rlPredefinedEnv('SimplePendulumModel-Continuous"')

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: []
UseFastRestart: 'on'
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Input Arguments

keyword — Predefined keyword representing the environment name
'BasicGridWorld' | 'CartPole-Discrete' | 'CartPole-Continuous' |
'DoubleIntegrator-Discrete' | 'DoubleIntegrator-Continuous' |
'SimplePendulumWithImage-Discrete' | 'SimplePendulumWithImage-Continuous' |
'WaterFallGridWorld-Deterministic' | 'WaterFallGridWorld-Stochastic' |
'SimplePendulumModel-Discrete' | 'SimplePendulumModel-Continuous' |
"CartPoleSimscapeModel-Discrete' | 'CartPoleSimscapeModel-Continuous'

Predefined keyword representing the environment name, specified as one of the following:
MATLAB Environment

* 'BasicGridWorld'

* 'CartPole-Discrete'’

* 'CartPole-Continuous'

* 'DoublelIntegrator-Discrete’

* 'DoubleIntegrator-Continuous'

+ 'SimplePendulumWithImage-Discrete’

* 'SimplePendulumWithImage-Continuous'
*+ 'WaterFallGridWorld-Stochastic'

+ 'WaterFallGridWorld-Deterministic'

Simulink Environment

* 'SimplePendulumModel-Discrete’

* 'SimplePendulumModel-Continuous'

* 'CartPoleSimscapeModel-Discrete'

* 'CartPoleSimscapeModel-Continuous'

Output Arguments

env — MATLAB or Simulink environment object

rIMDPEnNv object | CartPoleDiscreteAction object | CartPoleContinuousAction object |
DoubleIntegratorDiscreteAction object | DoubleIntegratorContinuousAction object |
SimplePendlumWithImageDiscreteAction object |
SimplePendlumWithImageContinuousAction object | SimulinkEnvWithAgent object

MATLAB or Simulink environment object, returned as one of the following:
* rlMDPEnNv object, when you use one of the following keywords:

* 'BasicGridworld'
*+ 'WaterFallGridWorld-Stochastic'
* 'WaterFallGridWorld-Deterministic'
* CartPoleDiscreteAction object, when you use the 'CartPole-Discrete' keyword.
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* CartPoleContinuousAction object, when you use the 'CartPole-Continuous' keyword.

* DoubleIntegratorDiscreteAction object, when you use the 'DoubleIntegrator-
Discrete' keyword.

* DoubleIntegratorContinuousAction object, when you use the 'DoubleIntegrator-
Continuous' keyword.

* SimplePendlumWithImageDiscreteAction object, when you use the
'SimplePendulumWithImage-Discrete' keyword.

* SimplePendlumWithImageContinuousAction object, when you use the
'SimplePendulumWithImage-Continuous' keyword.

* SimulinkEnvWithAgent object, when you use one of the following keywords:

+ 'SimplePendulumModel-Discrete’

e 'SimplePendulumModel-Continuous’
"CartPoleSimscapeModel-Discrete’
'CartPoleSimscapeModel-Continuous'

See Also

Topics

“Create MATLAB Environments for Reinforcement Learning”
“Create Simulink Environments for Reinforcement Learning”
“Load Predefined Control System Environments”

“Load Predefined Simulink Environments”

Introduced in R2019a
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rIRepresentation

(Not recommended) Model representation for reinforcement learning agents

Note rlRepresentationis not recommended. Use rlValueRepresentation,
rlQValueRepresentation, rlDeterministicActorRepresentation, or
rlStochasticActorRepresentation instead. For more information, see “Compatibility
Considerations”.

Syntax

rep = rlRepresentation(net,obsInfo, 'Observation',obsNames)

rep = rlRepresentation(net,obsInfo,actInfo, 'Observation',obsNames, 'Action’,
actNames)

tableCritic = rlRepresentation(tab)

critic rlRepresentation(basisFcn,W0,o0bsInfo)
critic = rlRepresentation(basisFcn,W0,0alInfo)
actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo)

rep = rlRepresentation(  ,repOpts)

Description

Use rlRepresentation to create a function approximator representation for the actor or critic of a
reinforcement learning agent. To do so, you specify the observation and action signals for the training
environment and options that affect the training of an agent that uses the representation. For more
information on creating representations, see “Create Policy and Value Function Representations”.

rep = rlRepresentation(net,obsInfo, 'Observation',obsNames) creates a representation
for the deep neural network net. The observation names obsNames are the network input layer
names. obsInfo contains the corresponding observation specifications for the training environment.
Use this syntax to create a representation for a critic that does not require action inputs, such as a
critic for an rlACAgent or rlPGAgent agent.

rep = rlRepresentation(net,obsInfo,actInfo, 'Observation',obsNames, 'Action’,
actNames) creates a representation with action signals specified by the names actNames and
specification actInfo. Use this syntax to create a representation for any actor, or for a critic that
takes both observation and action as input, such as a critic for an rltDQNAgent or rlDDPGAgent
agent.

tableCritic = rlRepresentation(tab) creates a critic representation for the value table or Q
table tab. When you create a table representation, you specify the observation and action
specifications when you create tab.

critic = rlRepresentation(basisFcn,W0,obsInfo) creates a linear basis function

representation using the handle to a custom basis function basisFcn and initial weight vector WO.
obsInfo contains the corresponding observation specifications for the training environment. Use
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this syntax to create a representation for a critic that does not require action inputs, such as a critic
for an rlACAgent or rlPGAgent agent.

critic = rlRepresentation(basisFcn,W0,0aInfo) creates a linear basis function
representation using the specification cell array oaInfo, where oaInfo = {obsInfo,actInfo}.
Use this syntax to create a representation for a critic that takes both observations and actions as
inputs, such as a critic for an rlDQNAgent or rlDDPGAgent agent.

actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo) creates a linear basis function
representation using the specified observation and action specifications, obsInfo and actInfo,
respectively. Use this syntax to create a representation for an actor that takes observations as inputs
and generates actions.

rep = rlRepresentation(  ,repOpts) creates a representation using additional options that
specify learning parameters for the representation when you train an agent. Available options include
the optimizer used for training and the learning rate. Use rlRepresentationOptions to create the
options set repOpts. You can use this syntax with any of the previous input-argument combinations.

Examples

Create Actor and Critic Representations

Create an actor representation and a critic representation that you can use to define a reinforcement
learning agent such as an Actor Critic (AC) agent.

For this example, create actor and critic representations for an agent that can be trained against the
cart-pole environment described in “Train AC Agent to Balance Cart-Pole System”. First, create the
environment. Then, extract the observation and action specifications from the environment. You need
these specifications to define the agent and critic representations.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For a state-value-function critic such as those used for AC or PG agents, the inputs are the
observations and the output should be a scalar value, the state value. For this example, create the
critic representation using a deep neural network with one output, and with observation signals
corresponding to x,xdot, theta, thetadot as described in “Train AC Agent to Balance Cart-Pole
System”. You can obtain the number of observations from the obsInfo specification. Name the
network layer input 'observation’.

numObservation = obsInfo.Dimension(1);

criticNetwork = [

imageInputLayer([numObservation 1 1], 'Normalization', 'none', 'Name', 'observation')
fullyConnectedLayer(1, 'Name', 'CriticFC')];

Specify options for the critic representation using rlRepresentationOptions. These options
control parameters of critic network learning, when you train an agent that incorporates the critic
representation. For this example, set the learning rate to 0.05 and the gradient threshold to 1.

repOpts = rlRepresentationOptions('LearnRate',5e-2, 'GradientThreshold',1);
Create the critic representation using the specified neural network and options. Also, specify the

action and observation information for the critic. Set the observation name to 'observation’,
which is the name you used when you created the network input layer for criticNetwork.
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critic = rlRepresentation(criticNetwork,obsInfo, 'Observation',{'observation'}, repOpts)

critic =
rlValueRepresentation with properties:

Options: [1x1 rl.option.rlRepresentationOptions]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
ActionInfo: {1x0 cell}

Similarly, create a network for the actor. An AC agent decides which action to take given observations
using an actor representation. For an actor, the inputs are the observations, and the output depends
on whether the action space is discrete or continuous. For the actor of this example, there are two
possible discrete actions, -10 or 10. Thus, to create the actor, use a deep neural network with the
same observation input as the critic, that can output these two values. You can obtain the number of
actions from the actInfo specification. Name the output 'action’.

numAction = numel(actInfo.Elements);

actorNetwork = [

imageInputLayer([4 1 1], 'Normalization', 'none','Name', 'observation')
fullyConnectedLayer(numAction, 'Name', 'action')];

Create the actor representation using the observation name and specification and the action name
and specification. Use the same representation options.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'observation'}, 'Action',{'action'}, repOpts)

actor =
rlStochasticActorRepresentation with properties:

Options: [1x1 rl.option.rlRepresentationOptions]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
ActionInfo: [1x1 rl.util.rlFiniteSetSpec]

You can now use the actor and critic representations to create an AC agent.
agentOpts = rlACAgentOptions(...

"NumStepsToLookAhead',32,...

'‘DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent =
rlACAgent with properties:

AgentOptions: [1x1 rl.option.rlACAgentOptions]

Create Q Table Representation
This example shows how to create a Q Table representation:

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a Q table using the action and observation specifications from the environment.
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gTable = rlTable(getObservationInfo(env),getActionInfo(env));

Create a representation for the Q table.

tableRep = rlRepresentation(qTable);

Create Quadratic Basis Function Critic Representation
This example shows how to create a linear basis function critic representation.

Assume that you have an environment, env. For this example, load the environment used in the
“Train Custom LQR Agent” example.

load myLQREnv.mat
Obtain the observation and action specifications from the environment.

obsInfo
actInfo

getObservationInfo(env);
getActionInfo(env);

Create a custom basis function. In this case, use the quadratic basis function from “Train Custom
LQR Agent”.

Set the dimensions and parameters required for your basis function.

n==6;

Set an initial weight vector.

wl = 0.1*ones(0.5*(n+1)*n,1);

Create a representation using a handle to the custom basis function.

critic = rlRepresentation(@(x,u) computeQuadraticBasis(x,u,n),w0,{obsInfo,actInfo});
Function to compute the quadratic basis from “Train Custom LQR Agent”.
function B = computeQuadraticBasis(x,u,n)

z = cat(1,x,u);
idx = 1;

B = cat(1,B,z(r)*z(c));
end
idx = idx + 1;
end
end
end

Input Arguments

net — Deep neural network for actor or critic
array of Layer objects | LayerGraph object | DAGNetwork object | SeriesNetwork object
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Deep neural network for actor or critic, specified as one of the following:

* Array of Layer objects
* layerGraph object

* DAGNetwork object

* SeriesNetwork object
* dlnetwork object

For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).
For more information on creating deep neural networks for reinforcement learning, see “Create
Policy and Value Function Representations”.

obsNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors. The observation names are the
network input layer names you specify when you create net. The names in obsNames must be in the
same order as the observation specifications in obsInfo.

Example: {'observation'}

obsInfo — Observation specification
spec object | array of spec objects

Observation specification, specified as a reinforcement learning spec object or an array of spec
objects. You can extract obsInfo from an existing environment using getObservationInfo. Or,
you can construct the specs manually using a spec command such as rlFiniteSetSpec or
rlNumericSpec. This specification defines such information about the observations as the
dimensions and names of the observation signals.

actNames — Action name
single-element cell array that contains a character vector

Action name, specified as a single-element cell array that contains a character vector. The action
name is the network layer name you specify when you create net. For critic networks, this layer is
the first layer of the action input path. For actors, this layer is the last layer of the action output path.

Example: {'action'}

actInfo — Action specification
spec object

Action specification, specified as a reinforcement learning spec object. You can extract actInfo from
an existing environment using getActionInfo. Or, you can construct the spec manually using a
spec command such as rlFiniteSetSpec or rlNumericSpec. This specification defines such
information about the action as the dimensions and name of the action signal.

For linear basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

tab — Value table or Q table for critic
rlTable object

Value table or Q table for critic, specified as an rlTable object. The learnable parameters of a table
representation are the elements of tab.
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basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined function. For a linear basis
function representation, the output of the representation is f = W'B, where W is a weight array and B
is the column vector returned by the custom basis function. The learnable parameters of a linear
basis function representation are the elements of W.

When creating:

» A critic representation with observation inputs only, your basis function must have the following
signature.

B = myBasisFunction(obsl,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in obsInfo.

* A critic representation with observation and action inputs, your basis function must have the
following signature.

B = myBasisFunction(obsl,obs2,...,obsN,act)

Here obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in the first element of caInfo, and act has the same
data type and dimensions as the action specification in the second element of oaInfo.

* An actor representation, your basis function must have the following signature.

B = myBasisFunction(obsl,o0bs2,...,0bsN)

Here, obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in obsInfo. The data types and dimensions of the
action specification in actInfo affect the data type and dimensions of f.

Example: @(x,u) myBasisFunction(x,u)

WO — Initial value for linear basis function weight vector
column vector | array

Initial value for linear basis function weight array, W, specified as one of the following:

* Column vector — When creating a critic representation or an actor representation with a
continuous scalar action signal

» Array — When creating an actor representation with a column vector continuous action signal or a
discrete action space.

oaInfo — Observation and action specifications
cell array

Observation and action specifications for creating linear basis function critic representations,
specified as the cell array {obsInfo,actInfo}.

repOpts — Representation options
rlRepresentationOptions object
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Representation options, specified as an option set that you create with rlRepresentationOptions.
Available options include the optimizer used for training and the learning rate. See
rlRepresentationOptions for details.

Output Arguments

rep — Deep neural network representation
rlLayerRepresentation object

Deep neural network representation, returned as an rlLayerRepresentation object. Use this
representation to create an agent for reinforcement learning. For more information, see
“Reinforcement Learning Agents”.

tableCritic — Value or Q table critic representation
rlTableRepresentation object

Value or Q table critic representation, returned as an rlTableRepresentation object. Use this
representation to create an agent for reinforcement learning. For more information, see
“Reinforcement Learning Agents”.

critic — Linear basis function critic representation
rlLinearBasisRepresentation object

Linear basis function critic representation, returned as and rlLinearBasisRepresentation
object. Use this representation to create an agent for reinforcement learning. For more information,
see “Reinforcement Learning Agents”.

actor — Linear basis function actor representation
rlLinearBasisRepresentation object

Linear basis function actor representation, returned as and rlLinearBasisRepresentation
object. Use this representation to create an agent for reinforcement learning. For more information,
see “Reinforcement Learning Agents”.

Compatibility Considerations

rlRepresentation is not recommended
Not recommended starting in R2020a

rlRepresentation is not recommended. Depending on the type of representation being created,
use one of the following objects instead:

* rlValueRepresentation — State value critic, computed based on observations from the
environment.

* rlQValueRepresentation — State-action value critic, computed based on both actions and
observations from the environment.

* rlDeterministicActorRepresentation — Actor with deterministic actions, based on
observations from the environment.

* rlStochasticActorRepresentation — Actor with stochastic actions, based on observations
from the environment.

The following table shows some typical uses of the rlRepresentation function to create neural
network-based critics and actors, and how to update your code with one of the new objects instead.
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Network-Based Representations: Not
Recommended

Network-Based Representations:
Recommended

rep =
rlRepresentation(net,obsInfo, 'Observat
ion',obsName), with net having only
observations as inputs, and a single scalar
output.

rep =
rlValueRepresentation(net,obsInfo, 'Obs
ervation',obsName). Use this syntax to create
a representation for a critic that does not require
action inputs, such as a critic for an rtACAgent
or rLPGAgent agent.

rep =
rlRepresentation(net,obsInfo,actInfo, "
Observation',obsName, 'Action',actName)
, with net having both observations and action as
inputs, and a single scalar output.

rep =
rlQValueRepresentation(net,obsInfo,act
Info, 'Observation',obsName, 'Action',ac
tName). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rtDQNAgent or r DDPGAgent
agent.

rep =
rlRepresentation(net,obsInfo,actInfo,"
Observation',obsName, 'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
continuous action space.

rep =
rlDeterministicActorRepresentation(net
,obsInfo,actInfo, 'Observation',obsName
, "Action',actName). Use this syntax to create
a deterministic actor representation for a
continuous action space.

rep =
rlRepresentation(net,obsInfo,actInfo,"
Observation',obsName, 'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
discrete action space.

rep =
rlStochasticActorRepresentation(net,ob
sInfo,actInfo, 'Observation', obsName).
Use this syntax to create a stochastic actor
representation for a discrete action space.

The following table shows some typical uses of the

rlRepresentation objects to express table-

based critics with discrete observation and action spaces, and how to update your code with one of

the new objects instead.

Table-Based Representations: Not
Recommended

Table-Based Representations: Recommended

rep = rlRepresentation(tab), with tab
containing a value table consisting in a column
vector as long as the number of possible
observations.

rep =
rlValueRepresentation(tab,obsInfo). Use
this syntax to create a representation for a critic
that does not require action inputs, such as a
critic for an rlACAgent or rlPGAgent agent.

rep = rlRepresentation(tab), with tab
containing a Q-value table with as many rows as
the possible observations and as many columns
as the possible actions.

rep =
rlQValueRepresentation(tab,obsInfo,act
Info). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rtDQNAgent or r DDPGAgent
agent.

The following table shows some typical uses of the

rlRepresentation function to create critics and

actors which use a custom basis function, and how to update your code with one of the new objects
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instead. In the recommended function calls, the first input argument is a two-elements cell containing
both the handle to the custom basis function and the initial weight vector or matrix.

Custom Basis Function-Based
Representations: Not Recommended

Custom Basis Function-Based
Representations: Recommended

rep =
rlRepresentation(basisFcn,W0,obsInfo),
where the basis function has only observations as
inputs and WO is a column vector.

rep =
rlValueRepresentation({basisFcn,W0},ob
sInfo). Use this syntax to create a
representation for a critic that does not require
action inputs, such as a critic for an rltACAgent
or rLPGAgent agent.

rep = rlRepresentation(basisFcn,Wo,
{obsInfo,actInfo}), where the basis function
has both observations and action as inputs and
WO is a column vector.

rep =
rlQValueRepresentation({basisFcn,W0},0
bsInfo,actInfo). Use this syntax to create a
single-output state-action value representation
for a critic that takes both observation and action
as input, such as a critic for an rtDQNAgent or
rlDDPGAgent agent.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, WO
is a matrix, and actInfo defines a continuous
action space.

rep =
rlDeterministicActorRepresentation({ba
sisFcn,W0},obsInfo,actInfo). Use this
syntax to create a deterministic actor
representation for a continuous action space.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, WO
is a matrix, and actInfo defines a discrete
action space.

rep =
rlStochasticActorRepresentation({basis
Fcn,W0},obsInfo,actInfo). Use this syntax
to create a deterministic actor representation for
a discrete action space.

See Also

Functions

getActionInfo | getObservationInfo | riDeterministicActorRepresentation |
rlQValueRepresentation | rlRepresentationOptions |
rlStochasticActorRepresentation | rlValueRepresentation

Topics

“Create Policy and Value Function Representations”

“Reinforcement Learning Agents”

Introduced in R2019a
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Create a reinforcement learning environment using a dynamic model implemented in Simulink

Syntax

env = rlSimulinkEnv(mdl,agentBlock,obsInfo,actInfo)

env = rlSimulinkEnv( _ ,'UseFastRestart', fastRestartToggle)
Description

env = rlSimulinkEnv(mdl,agentBlock,obsInfo,actInfo) creates a reinforcement learning
environment object env using the Simulink model name md1, the path to the agent block
agentBlock, observation information obsInfo, and action information actInfo.

env = rlSimulinkEnv( , 'UseFastRestart', fastRestartToggle) creates a
reinforcement learning environment object env with additional option to enable fast restart.

Examples

Reinforcement Learning Environment for Simulink models

For this example, consider the rlSimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that is initially hanging in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel’;
open_system(mdl)

Assign the agent block path information, and create riNumericSpec and rlFiniteSetSpec objects
for the observation and action information. You can use dot notation to assign property values of the
riNumericSpec and rlFiniteSetSpec objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = riNumericSpec([3 1])

obsInfo =
riNumericSpec with properties:

LowerLimit: -Inf
UpperLimit: Inf
Name: [0x0 string]
Description: [0x0 string]
Dimension: [3 1]
DataType: "double"

actInfo = rlFiniteSetSpec([2 1])

actInfo =
rlFiniteSetSpec with properties:
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Elements: [2x1 double]
Name: [0x0 string]
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

obsInfo.Name
actInfo.Name

'observations';
‘torque’;

Create the reinforcement learning environment for the Simulink model using information extracted in
the previous steps.

env rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: []
UseFastRestart: 'on'

You can also include a reset function using dot notation. For this example, consider randomly
initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in, 'theta0®', randn, 'Workspace',mdl)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rl1SimplePendulumModel/RL Agent"

ResetFcn: @(in)setVariable(in, 'theta@', randn, 'Workspace',mdl)
UseFastRestart: 'on'

Input Arguments

mdl — Simulink model name
string | character vector

Simulink model name, specified as a string or character vector.

agentBlock — Agent block path
string | character vector

Agent block path, specified as a string or character vector. The specified agent block can be inside of
a model reference.

For more information on configuring an agent block for reinforcement learning, see RL Agent.

obsInfo — Observation information
array of riNumericSpec objects | array of rlFiniteSetSpec objects
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Observation information, specified as an array of one of the following:

* rlNumericSpec objects
* rlFiniteSetSpec objects
* A mix of riNumericSpec and rlFiniteSetSpec objects

For more information, see getObservationInfo.

actInfo — Action information
array of rUNumericSpec objects | array of rlFiniteSetSpec objects

Action information, specified as an array of one of the following:

* rlNumericSpec objects
* rlFiniteSetSpec objects
* A mix of rlNumericSpec and rlFiniteSetSpec objects

For more information, see getActionInfo.

fastRestartToggle — Option to toggle fast restart
‘on' (default) | 'off'

Option to toggle fast restart, specified as either 'on' or 'off'. Fast restart allows you to perform
iterative simulations without compiling a model or terminating the simulation each time.

For more information on fast restart, see “How Fast Restart Improves Iterative Simulations”
(Simulink).

Output Arguments

env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment, returned as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Environments
for Reinforcement Learning”.

See Also
RL Agent | getActionInfo | getObservationInfo | rlFiniteSetSpec | riNumericSpec

Topics

“Train DDPG Agent to Control Double Integrator System”

“Train DDPG Agent to Swing Up and Balance Pendulum”

“Train DDPG Agent to Swing Up and Balance Cart-Pole System”

“Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”

“Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation”
“Train DDPG Agent for Adaptive Cruise Control”

“How Fast Restart Improves Iterative Simulations” (Simulink)

Introduced in R2019a
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setActor

Package: rl.agent

Set actor representation of reinforcement learning agent

Syntax

newAgent = setActor(oldAgent,actor)

Description

newAgent = setActor(oldAgent,actor) returns a new reinforcement learning agent,
newAgent, that uses the specified actor representation. Apart from the actor representation, the new
agent has the same configuration as the specified original agent, oldAgent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getlLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformQutput’', false);

Set the parameter values of the actor to the new modified values.

actor = setlLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Add Layer to Actor Representation

Assume that you have an existing reinforcement learning agent, agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”:
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load('DoubleIntegDDPG.mat', 'agent')

Further, assume that this agent has an actor representation that contains the following shallow
neural network structure:

oldActorNetwork = [
imagelInputLayer([2 1 11, 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(1, 'Name', 'action')];

Create the new network with the additional fully connected hidden layer:
newActorNetwork = [
imagelInputLayer([2 1 1], 'Normalization', 'none', 'Name', 'state')

fullyConnectedLayer(3, 'Name', 'hidden');
fullyConnectedLayer(1, 'Name', 'action')];

Create the corresponding actor representation:

actor = rlDeterministicActorRepresentation(newActorNetwork, ...
getObservationInfo(agent),getActionInfo(agent),...
'Observation',{'state'}, ...
"Action',{'action'})

actor =
rlDeterministicActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rUNumericSpec]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

Set the actor representation of the agent to the new augmented actor:

agent = setActor(agent,actor);

To check your agent, use getAction to return the action from a random observation.
getAction(agent,{rand(2,1)})

ans = single
1.4134

You can now test and train the agent against the environment.

Input Arguments

oldAgent — Reinforcement learning agent
rlDDPGAgent object | rLTD3Agent object | rLPGAgent object | rLACAgent object | rlPPOAgent
object

Reinforcement learning agent that contains an actor representation, specified as one of the following:

* rlDDPGAgent object
* rlTD3Agent object
* rlACAgent object
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* rlPGAgent object
* rlPPOAgent object

actor — Actor representation
riDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation object, specified as one of the following:

* rlDeterministicActorRepresentation object — Specify when agent is an rlDDPGAgent or
rlTD3Agent object

* rlStochasticActorRepresentation object — Specify when agent is an rtACAgent,
rlPGAgent, or rLPPOAgent object

The input and output layers of the specified representation must match the observation and action
specifications of the original agent.

To create a policy or value function representation, use one of the following methods:

* Create a representation using the corresponding representation object.
* Obtain the existing policy representation from an agent using getActor.

Output Arguments

newAgent — Updated reinforcement learning agent
rLDDPGAgent object | rlTD3Agent object | rLPGAgent object | rLACAgent object | rLPPOAgent
object

Updated reinforcement learning agent, returned as an agent object that uses the specified actor
representation. Apart from the actor representation, the new agent has the same configuration as
oldAgent.

See Also
getActor | getCritic | getLearnableParameters |setCritic | setLearnableParameters
Topics

“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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Package: rl.agent

Set critic representation of reinforcement learning agent

Syntax

newAgent = setActor(oldAgent,critic)

Description

newAgent = setActor(oldAgent,critic) returns a new reinforcement learning agent,
newAgent, that uses the specified critic representation. Apart from the critic representation, the new
agent has the same configuration as the specified original agent, oldAgent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getlLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformQutput', false);

Set the parameter values of the critic to the new modified values.

critic = setlLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Add Layer to Critic Representation

Assume that you have an existing reinforcement learning agent, agent. For this example, load the
trained agent from “Train AC Agent to Balance Cart-Pole System”:
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load( 'MATLABCartpoleAC.mat")

Further, assume that this agent has a critic representation that contains the following shallow neural
network structure with two layers:

oldCriticNetwork = [
imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(1, 'Name', 'CriticFC')];

Create the new network with an additional 5-neurons fully connected hidden layer:

newCriticNetwork = [
oldCriticNetwork(1)
fullyConnectedLayer(5, 'Name', 'hidden');
oldCriticNetwork(2)];

Create the critic using the new network with the additional fully connected layer.
critic = rlValueRepresentation(newCriticNetwork,getObservationInfo(agent), 'Observation',{'state";

Set the critic representation of the agent to the new critic.

newAgent = setCritic(agent,critic);

Input Arguments

oldAgent — Original reinforcement learning agent
rlQAgent object | rLSARSAAgent object | rLDQNAgent object | riDDPGAgent object | rlTD3Agent
object | rLPGAgent object | rLACAgent object | rLPPOAgent object

Original reinforcement learning agent that contains a critic representation, specified as one of the
following:

* rlQAgent object

* rlSARSAAgent object

* rlDQNAgent object

* rlDDPGAgent object

* rlTD3Agent object

* rlACAgent object

* rlPPOAgent object

* rlPGAgent object that estimates a baseline value function using a critic
critic — Critic representation

rlValueRepresentation object | rlQValueRepresentation object | two-element row vector of
rlQValueRepresentation objects

Critic representation object, specified as one of the following:

* rlValueRepresentation object — Returned when agent is an rlACAgent, rlPGAgent, or
rlPPOAgent object

* rlQValueRepresentation object — Returned when agent is an rlQAgent, rtSARSAAgent,
rlDQNAgent, rlDDPGAgent, or rlTD3Agent object with a single critic
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» Two-element row vector of rlQValueRepresentation objects — Returned when agent is an
rlTD3Agent object with two critics

Output Arguments

newAgent — Updated reinforcement learning agent
rlQAgent object | rLSARSAAgent object | rIDQNAgent object | riDDPGAgent object | rlTD3Agent
object | rLPGAgent object | rLACAgent object | rLPPOAgent object

Updated reinforcement learning agent, returned as an agent object that uses the specified critic
representation. Apart from the critic representation, the new agent has the same configuration as
oldAgent.

See Also
getActor | getCritic | getLearnableParameters | setActor | setLearnableParameters

Topics

“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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setLearnableParameters

Package: rl.representation

Set learnable parameter values of policy or value function representation

Syntax

newRep = setlLearnableParameters(oldRep,val)

Description

newRep = setlLearnableParameters(oldRep,val) returns a new policy or value function
representation, newRep, with the same structure as the original representation, oldRep, and the
learnable parameter values specified in val.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat', 'agent')

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getlLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformQutput’', false);

Set the parameter values of the critic to the new modified values.

critic = setlLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.
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load('DoubleIntegDDPG.mat', 'agent')

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getlLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.
modifiedParams = cellfun(@(x) x*2,params, 'UniformOutput', false);

Set the parameter values of the actor to the new modified values.

actor = setlLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments

oldRep — Original policy or value function representation
rlValueRepresentation object | rltQValueRepresentation object |
riDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Original policy or value function representation, specified as one of the following:

* rlValueRepresentation object — Value function representation
* rlQValueRepresentation object — Q-value function representation

* rlDeterministicActorRepresentation object — Actor representation with deterministic
actions

* rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods:

* Create a representation using the corresponding representation object.
* Obtain the existing value function representation from an agent using getCritic
* Obtain the existing policy representation from an agent using getActor.

val — Learnable parameter values
cell array

Learnable parameter values for the representation object, specified as a cell array. The parameters in
val must be compatible with the structure and parameterization of oldRep.

To obtain a cell array of learnable parameter values from an existing representation, which you can
then modify, use the getLearnableParameters function.
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Output Arguments

newRep — New policy or value function representation
rlValueRepresentation | rlQValueRepresentation |
riDeterministicActorRepresentation | rlStochasticActorRepresentation

New policy or value function representation, returned as a representation object of the same type as
oldRep. newRep has the same structure as oldRep but with parameter values from val.

Compatibility Considerations

setLearnableParameterValues is now setLearnableParameters
Behavior changed in R2020a

setLearnableParameterValues is now setLearnableParameters. To update your code, change
the function name from setLearnableParameterValues to setLearnableParameters. The
syntaxes are equivalent.

See Also
getActor | getCritic | getLearnableParameters | setActor|setCritic
Topics

“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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sSim
Package: rl.env

Simulate a trained reinforcement learning agent within a specified environment

Syntax

experience sim(env,agent,simOpts)
experience = sim(agent,env,simOpts)

Description

experience = sim(env,agent,simOpts) simulates a reinforcement learning environment
against an agent configured for that environment..

experience = sim(agent,env,simOpts) performs the same simulation as the previous syntax.

Examples

Simulate a Reinforcement Learning Environment

Simulate a reinforcement learning environment with an agent configured for that environment. For
this example, load an environment and agent that are already configured. The environment is a
discrete cart-pole environment created with rlPredefinedEnv. The agent is a policy gradient
(rlPGAgent) agent. For more information about the environment and agent used in this example, see
“Train PG Agent to Balance Cart-Pole System”.

rng(0) % for reproducibility
load RLSimExample.mat
env

env =
CartPoleDiscreteAction with properties:

Gravity: 9.8000
MassCart: 1
MassPole: 0.1000
Length: 0.5000
MaxForce: 10
Ts: 0.0200
ThetaThresholdRadians: 0.2094
XThreshold: 2.4000
RewardForNotFalling: 1
PenaltyForFalling: -5
State: [4x1 double]

agent

agent =
rlPGAgent with properties:
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AgentOptions: [1x1 rl.option.rlPGAgentOptions]

Typically, you train the agent using train and simulate the environment to test the performance of
the trained agent. For this example, simulate the environment using the agent you loaded. Configure
simulation options, specifying that the simulation run for 100 steps.

simOpts = rlSimulationOptions('MaxSteps',100);

For the predefined cart-pole environment used in this example. you can use plot to generate a
visualization of the cart-pole system. When you simulate the environment, this plot updates
automatically so that you can watch the system evolve during the simulation.

plot(env)
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Simulate the environment.
experience = sim(env,agent,simOpts)
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experience = struct with fields:
Observation: [1x1 struct]
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Action: [1x1 struct]

Reward: [1x1 timeseries]

IsDone: [1x1 timeseries]
SimulationInfo: [1x1 struct]

The output structure experience records the observations collected from the environment, the
action and reward, and other data collected during the simulation. Each field contains is a timeseries
or a structure of timeseries data. For instance, experience.Action is a timeseries containing the
action imposed on the cart-pole system by the agent at each step of the simulation.

experience.Action

ans = struct with fields:
CartPoleAction: [1x1 timeseries]

Input Arguments

env — Environment
reinforcement learning environment object

Environment in which the agent acts, specified as a reinforcement learning environment object, such
as:
* A predefined MATLAB or Simulink environment created using rlPredefinedEnv

* A custom MATLAB environment you create with functions such as rlFunctionEnv or
rlCreateEnvTemplate

* A custom Simulink environment you create using rlSimulinkEnv

For more information about creating and configuring environments, see:

* “Create MATLAB Environments for Reinforcement Learning”
* “Create Simulink Environments for Reinforcement Learning”

When env is a Simulink environment, calling sim compiles and simulates the model associated with
the environment.

agent — Agent
reinforcement learning agent object

Agent to train, specified as a reinforcement learning agent object, such as an rlACAgent or
rlDDPGAgent object, or a custom agent. Before simulation, you must configure the actor and critic
representations of the agent. For more information about how to create and configure agents for
reinforcement learning, see “Reinforcement Learning Agents”.

simOpts — Simulation options
rlSimulationOptions object

Simulation options, specified as an rlSimulationOptions object. Use this argument to specify
such parameters and options as:

* Number of steps per simulation
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¢ Number of simulations to run

For details, see rlSimulationOptions.

Output Arguments

experience — Simulation results
structure | structure array

Simulation results, returned as a structure or structure array. The number f elements in the array is
equal to the number of simulations specified by the NumSimulations option of
rlSimulationOptions The fields of the experience structure are as follows.

Observation — Observations
structure

Observations collected from the environment, returned as a structure with fields corresponding to the
observations specified in the environment. Each field contains a timeseries of length N + 1, where
N is the number of simulation steps.

To obtain the current observation and the next observation for a given simulation step, use code such
as the following, assuming one of the fields of Observation is obsl.

Obs = getSamples(experience.Observation.obsl,1:N);
NextObs = getSamples(experience.Observation.obsl,2:N+1);

These values can be useful if you are writing your own training algorithm using sim to generate
experiences for training.

Action — Actions
structure

Actions computed by the agent, returned as a structure with fields corresponding to the action
signals specified in the environment. Each field contains a timeseries of length N, where N is the
number of simulation steps.

Reward — Rewards
timeseries

Reward at each step in the simulation, returned as a timeseries of length N, where N is the
number of simulation steps.

IsDone — Flag indicating termination of episode
timeseries

Flag indicating termination of episode, returned as a timeseries of a scalar logical signal. This flag
is set at each step by the environment, according to conditions you specify for episode termination
when you configure the environment. When the environment sets this flag to 1, simulation
terminates.

SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOQutput objects

Information collected during simulation, returned as:
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» For MATLAB environments, a structure containing the field SimulationError. This structure
contains any errors that occurred during simulation.

* For Simulink environments, a Simulink.SimulationOutput object containing simulation data.
Recorded data includes any signals and states that the model is configured to log, simulation
metadata, and any errors that occurred.

See Also
riSimulationOptions | train

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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train

Package: rl.agent

Train a reinforcement learning agent within a specified environment

Syntax

trainStats = train(agent,env,trainOpts)

Description

trainStats = train(agent,env,trainOpts) trains a reinforcement learning agent with a
specified environment. After each training episode, train updates the parameters of agent to
maximize the expected long-term reward of the environment. When training terminates, the agent
reflects the state of training at termination.

Use the training options trainOpts to specify training parameters such as the criteria for
termination of training, when to save agents, the maximum number of episodes to train, and the
maximum number of steps per episode.

Examples

Train a Reinforcement Learning Agent

Configure the training parameters and train a reinforcement learning agent. Typically, before
training, you must configure your environment and agent. For this example, load an environment and
agent that are already configured. The environment is a discrete cart-pole environment created with
rlPredefinedEnv. The agent is a Policy Gradient (rLPGAgent) agent. For more information about
the environment and agent used in this example, see “Train PG Agent to Balance Cart-Pole System”.

rng(0) % for reproducibility
load RLTrainExample.mat
env

env =
CartPoleDiscreteAction with properties:

Gravity: 9.8000
MassCart: 1
MassPole: 0.1000
Length: 0.5000
MaxForce: 10
Ts: 0.0200
ThetaThresholdRadians: 0.2094
XThreshold: 2.4000
RewardForNotFalling: 1
PenaltyForFalling: -5
State: [4x1 double]

agent
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agent =
rlPGAgent with properties:

AgentOptions: [1x1 rl.option.rlPGAgentOptions]

To train this agent, you must first specify training parameters using rlTrainingOptions. These
parameters include the maximum number of episodes to train, the maximum steps per episode, and
the conditions for terminating training. For this example, use a maximum of 1000 episodes and 500
steps per episode. Instruct the training to stop when the average reward over the previous five
episodes reaches 500. Create a default options set and use dot notation to change some of the
parameter values.

trainOpts = rlTrainingOptions;

trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 500;
trainOpts.ScoreAveragingWindowLength = 5;

During training, the train command can save candidate agents that give good results. Further
configure the training options to save an agent when the episode reward exceeds 500. Save the agent
to a folder called savedAgents.

trainOpts.SaveAgentCriteria = "EpisodeReward";
trainOpts.SaveAgentValue = 500;
trainOpts.SaveAgentDirectory = "savedAgents";

Finally, turn off the command-line display. Turn on the Reinforcement Learning Episode Manager so
you can observe the training progress visually.

trainOpts.Verbose = false;
trainOpts.Plots = "training-progress";

You are now ready to train the PG agent. For the predefined cart-pole environment used in this
example. you can use plot to generate a visualization of the cart-pole system.

plot(env)
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Episode Reward

When you run this example, both this visualization and the Reinforcement Learning Episode Manager
update with each training episode. Place them side by side on your screen to observe the progress,
and train the agent. (This computation can take 20 minutes or more.)

trainingInfo

train(agent,env,trainOpts);
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900
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Training Progress ( 23-Jan-2019 10:39:55 )

Episode Information
Episode Mumber 974
Episode Reward 500
Episode Steps 500

Total Number of Steps 122730

Average Results

Average Reward 500

Average Steps 500

Window Length for Averaging 5

Training Options
Hardware Resource CPU
Learn Rate 0.01
Maximum Number of Episodes 1000
Maximum Steps per Episode 500

Final Results
Training Stopped by  AverageReward
Training Stopped at Value 500
Elapsed Time 1804.4 sec

The Episode Manager shows that the training successfully reaches the termination condition of a
reward of 500 averaged over the previous five episodes. At each training episode, train updates
agent with the parameters learned in the previous episode. When training terminates, you can

simulate the environment with the trained agent to evaluate its performance. The environment plot
updates during simulation as it did during training.
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simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
.‘l- I = 1T EI 1 EE 1
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During training, train saves to disk any agents that meet the condition specified with
trainOps.SaveAgentCritera and trainOpts.SaveAgentValue. To test the performance of any
of those agents, you can load the data from the data files in the folder you specified using
trainOpts.SaveAgentDirectory, and simulate the environment with that agent.

Input Arguments

agent — Agent
reinforcement learning agent object

Agent to train, specified as a reinforcement learning agent object, such as an rlACAgent or
rlDDPGAgent object, or a custom agent. Before training, you must configure the actor and critic
representations of the agent. For more information about how to create and configure agents for
reinforcement learning, see “Reinforcement Learning Agents”.

env — Environment
reinforcement learning environment object

Environment in which the agent acts, specified as a reinforcement learning environment object, such
as:
* A predefined MATLAB or Simulink environment created using rlPredefinedEnv

* A custom MATLAB environment you create with functions such as rlFunctionEnv or
rlCreateEnvTemplate

* A custom Simulink environment you create using rlSimulinkEnv
For more information about creating and configuring environments, see:

* “Create MATLAB Environments for Reinforcement Learning”
* “Create Simulink Environments for Reinforcement Learning”

When env is a Simulink environment, calling train compiles and simulates the model associated
with the environment.
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trainOpts — Training parameters and options
rlTrainingOptions object

Training parameters and options, specified as an rlTrainingOptions object. Use this argument to
specify such parameters and options as:

* Criteria for ending training

* Criteria for saving candidate agents
* How to display training progress

* Options for parallel computing

For details, see rlTrainingOptions.

Output Arguments

trainStats — Training episode data
structure

Training episode data, returned as a structure containing the following fields.

EpisodeIndex — Episode numbers
[1;2;..;N]

Episode numbers, returned as the column vector [1;2;..;N], where N is the number of episodes in
the training run. This vector is useful if you want to plot the evolution of other quantities from
episode to episode.

EpisodeReward — Reward for each episode
column vector

Reward for each episode, returned in a column vector of length N. Each entry contains the reward for
the corresponding episode.

EpisodeSteps — Number of steps in each episode
column vector

Number of steps in each episode, returned in a column vector of length N. Each entry contains the
number of steps in the corresponding episode.

AverageReward — Average reward over the averaging window
column vector

Average reward over the averaging window specified in trainOpts, returned as a column vector of
length N. Each entry contains the average award computed at the end of the corresponding episode.

TotalAgentSteps — Total number of steps
column vector

Total number of agent steps in training, returned as a column vector of length N. Each entry contains
the cumulative sum of the entries in EpisodeSteps up to that point.

EpisodeQ0 — Critic estimate of long-term reward for each episode
column vector
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Critic estimate of long-term reward using the current agent and the environment initial conditions,
returned as a column vector of length N. Each entry is the critic estimate (Q,) for the agent of the
corresponding episode. This field is present only for agents that have critics, such as ritDDPGAgent
and rlDQNAgent.

SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOutput objects

Information collected during the simulations performed for training, returned as:

» For training in MATLAB environments, a structure containing the field SimulationError. This
field is a column vector with one entry per episode. When the StopOnError option of
rlTrainingOptionsis "off", each entry contains any errors that occurred during the
corresponding episode.

 For training in Simulink environments, a vector of Simulink.SimulationOutput objects
containing simulation data recorded during the corresponding episode. Recorded data for an
episode includes any signals and states that the model is configured to log, simulation metadata,
and any errors that occurred during the corresponding episode.

Tips

* train updates the agent as training progresses. To preserve the original agent parameters for
later use, save the agent to a MAT-file.

* By default, calling train opens the Reinforcement Learning Episode Manager, which lets you
visualize the progress of the training. The Episode Manager plot shows the reward for each
episode, a running average reward value, and the critic estimate Q, (for agents that have critics).
The Episode Manager also displays various episode and training statistics. To turn off the
Reinforcement Learning Episode Manager, set the Plots option of trainOpts to "none".

* Ifyou use a predefined environment for which there is a visualization, you can use plot(env) to
visualize the environment. If you call plot (env) before training, then the visualization updates
during training to allow you to visualize the progress of each episode. (For custom environments,
you must implement your own plot method.)

» Training terminates when the conditions specified in trainOpts are satisfied. To terminate
training in progress, in the Reinforcement Learning Episode Manager, click Stop Training.
Because train updates the agent at each episode, you can resume training by calling
train(agent,env,trainOpts) again, without losing the trained parameters learned during the
first call to train.

* During training, you can save candidate agents that meet conditions you specify with trainOpts.
For instance, you can save any agent whose episode reward exceeds a certain value, even if the
overall condition for terminating training is not yet satisfied. train stores saved agents in a MAT-
file in the folder you specify with trainOpts. Saved agents can be useful, for instance, to allow
you to test candidate agents generated during a long-running training process. For details about
saving criteria and saving location, see rlTrainingOptions.

Algorithms

In general, train performs the following iterative steps:

1 [Initialize agent.
2  For each episode:
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Reset the environment.
Get the initial observation s, from the environment.
Compute the initial action ay = p(sy).

o N T 9

Set the current action to the initial action (a<a,) and set the current observation to the initial
observation (s<s).

e  While the episode is not finished or terminated:

i  Step the environment with action a to obtain the next observation s' and the reward r.
ii  Learn from the experience set (s,a,r,s").
iii Compute the next action a' = u(s").

iv  Update the current action with the next action (a<a') and update the current
observation with the next observation (s<s').

v Break if the episode termination conditions defined in the environment are met.

3 Ifthe training termination condition defined by trainOpts is met, terminate training.
Otherwise, begin the next episode.

The specifics of how train performs these computations depends on your configuration of the agent
and environment. For instance, resetting the environment at the start of each episode can include
randomizing initial state values, if you configure your environment to do so.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To train in parallel, set the UseParallel and ParallelizationOptions options in the option set
trainOpts. For more information, see rlTrainingOptions.

See Also
rlTrainingOptions | sim

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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validateEnvironment

Package: rl.env

Validate custom reinforcement learning environment

Syntax

validateEnvironment (env)

Description

validateEnvironment(env) validates a reinforcement learning environment. This function is
useful when:

* You are using a custom environment for which you supplied your own step and reset functions,
such as an environment created using rlCreateEnvTemplate.

* You are using an environment you created from a Simulink model using rlSimulinkEnv.

validateEnvironment resets the environment, generates an initial observation and action, and
simulates the environment for one or two steps (see “Algorithms” on page 1-90). If there are no
errors during these operations, validation is successful, and validateEnvironment returns no
result. If errors occur, these errors appear in the MATLAB command window. Use the errors to
determine what to change in your observation specification, action specification, custom functions, or
Simulink model.

Examples

Validate Simulink Environment
This example shows how to validate a Simulink environment.

Create and validate and environment for the rlwatertank model, which represents a control
system containing a reinforcement learning agent (For details about this model, see “Create Simulink
Environment and Train Agent”.)

open_system('rlwatertank")
Create observation and action specifications for the environment.

obsInfo = rlNumericSpec([3 11,...
'"LowerLimit',[-inf -inf ©0 1°',...
"UpperLimit',[ inf dinf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]1);

actInfo.Name = 'flow';
numActions = numel(actInfo);
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Create an environment from the model.

env = rlSimulinkEnv('rlwatertank', 'rlwatertank/RL Agent',obsInfo,actInfo);

Now you use validateEnvironment to check whether the model is configured correctly.
validateEnvironment (env)

Error using rl.env.SimulinkEnvWithAgent/validateEnvironment (line 187)
Simulink environment validation requires an agent in the MATLAB base workspace
or in a data dictionary linked to the model. Specify the agent in the Simulink model.

validateEnvironment attempts to compile the model, initialize the environment and the agent,
and simulate the model. In this case, the RL Agent block is configured to use an agent called agent,
but no such variable exists in the MATLAB® workspace. Thus, the function returns an error
indicating the problem.

Create an appropriate agent for this system using the commands detailed in the “Create Simulink
Environment and Train Agent” example. In this case, load the agent from the
riwWaterTankDDPGAgent.mat file.

load rlWaterTankDDPGAgent

Now, run validateEnvironment again.

validateEnvironment (env)

Input Arguments

env — Environment to validate
environment object

Environment to validate, specified as a reinforcement learning environment object, such as:

* A custom MATLAB environment you create with rlCreateEnvTemplate. In this case,
validateEnvironment checks that the observations and actions generated during simulation of
the environment are consistent in size, data type, and value range with the observation
specification and action specification. It also checks that your custom step and reset functions
run without error. (When you create a custom environment using rlFunctionEnv, the software
runs validateEnvironment automatically.)

* A custom Simulink environment you create using rlSimulinkEnv. If you use a Simulink
environment, you must also have an agent defined and associated with the RL Agent block in the
model. For a Simulink model, validateEnvironment checks that the model compiles and runs
without error. The function does not dirty your model.

For more information about creating and configuring environments, see:

* “Create MATLAB Environments for Reinforcement Learning”

* “Create Simulink Environments for Reinforcement Learning”
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Algorithms

validateEnvironment works by running a brief simulation of the environment and making sure
that the generated signals match the observation and action specifications you provided when you
created the environment.

MATLAB Environments
For MATLAB environments, validation includes the following steps.

Reset the environment using the reset function associated with the environment.

2 Obtain the first observation and check whether it is consistent with the dimension, data type, and
range of values in the observation specification.

3 Generate a test action based on the dimension, data type, and range of values in the action
specification.

4 Simulate the environment for one step using the generated action and the step function
associated with the environment.

5 Obtain the new observation signal and check whether it is consistent with the dimension, data
type, and range of values in the observation specification.

If any of these operations generates an error, validateEnvironment returns the error. If
validateEnvironment returns no result, then validation is successful.

Simulink Environments
For Simulink environments, validation includes the following steps.

1 Reset the environment.
2 Simulate the model for two time steps.

If any of these operations generates an error, validateEnvironment returns the error. If
validateEnvironment returns no result, then validation is successful.

validateEnvironment performs these steps without dirtying the model, and leaves all model
parameters in the state they were in when you called the function.

See Also
riCreateEnvTemplate | rlFunctionEnv | rlSimulinkEnv
Topics

“Create Simulink Environment and Train Agent”
“Create Custom MATLAB Environment from Template”

Introduced in R2019a
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quadraticLayer

Quadratic layer for actor or critic network

Description

A QuadraticLayer is a deep neural network layer that takes an input vector and outputs a vector of
quadratic monomials constructed from the input elements. For example, consider an input vector U =
[ul u2 u3]. For this input, a quadratic layer gives the output Y = [ul*ul ul*u2 u2*u2 ul*u3
u2*u3 u3*u3].

The quadratic layer is useful when you need a layer whose output is some quadratic function of its
inputs. For instance, inserting a QuadraticLayer into a network lets you recreate the structure of
quadratic value functions such as those used in LQR controller design. For an example that uses a
QuadraticLayer, see “Train DDPG Agent to Control Double Integrator System”.

The parameters of a QuadraticlLayer object are not learnable.

Creation

Syntax

gLayer
gLayer

quadraticLayer
quadraticLayer(Name,Value)

Description
gLayer = quadraticlLayer creates a quadratic layer with default property values.

gLayer = quadraticlLayer(Name,Value) sets properties on page 2-2 using name-value pairs.
For example, quadraticLayer('Name', 'quadlayer') creates a quadratic layer and assigns the
name 'quadlayer’.

Properties

Name — Name of layer
"quadratic’' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to ' ', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
'quadratic layer' (default) | character vector

This property is read-only.

Description of layer, specified as a character vector. When you create the quadratic layer, you can use
this property to give it a description that helps you identify its purpose.



quadraticLayer

Examples

Create Quadratic Layer

Create a quadratic layer that converts an input vector U into a vector of quadratic monomials
constructed from binary combinations of the elements of U.

gLayer = quadraticlLayer

gLayer =
QuadraticLayer with properties:

Name: 'quadratic'
Show all properties

Confirm that the layer produces the expected output. For instance, forU = [ul u2 u3], the
expected outputis [ul*ul ul*u2 u2*u2 ul*u3 u2*u3 u3*u3].

predict(qLayer,[1 2 3])
ans = 1Ix6

1 2 4 3 6 9

You can incorporate gLayer into an actor network or critic network for reinforcement learning.

See Also
scalinglLayer | softplusLayer

Topics
“Train DDPG Agent to Control Double Integrator System”
“Create Policy and Value Function Representations”

Introduced in R2019a
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rlACAgent

Actor-critic reinforcement learning agent

Description

Actor-critic (AC) agents implement actor-critic algorithms such as A2C and A3C, which are model-
free, online, on-policy reinforcement learning methods. The goal of this agent is to optimize the policy
(actor) directly and train a critic to estimate the return or future rewards.

For more information see “Actor-Critic Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlACAgent(actor,critic,agentOptions)
Description

agent = rlACAgent(actor,critic,agentOptions) creates an actor-critic agent with the
specified actor and critic networks and sets the AgentOptions property.

Input Arguments

actor — Actor network representation
riStochasticActorRepresentation object

Actor network representation for the policy, specified as an rlStochasticActorRepresentation
object. For more information on creating actor representations, see “Create Policy and Value
Function Representations”.

critic — Critic network representation
rlValueRepresentation ohject

Critic network representation for estimating the discounted long-term reward, specified as an
rlValueRepresentation. For more information on creating critic representations, see “Create
Policy and Value Function Representations”.

Properties

AgentOptions — Agent options
rlACAgentOptions object

Agent options, specified as an rlACAgentOptions object.
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Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create Actor-Critic Agent

Create an environment interface and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

% create the network to be used as approximator in the critic
criticNetwork = [
imagelInputlLayer([4 1 1], 'Normalization', 'none', 'Name', 'state"')
fullyConnectedLayer (1, 'Name', 'CriticFC')];

% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3, 'GradientThreshold',1);

% create the critic
critic = rlValueRepresentation(criticNetwork,obsInfo, 'Observation',{'state'},criticOpts);

Create an actor representation.

% create the network to be used as approximator in the actor
actorNetwork = [
imageInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(2, 'Name', 'action')];

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',8e-3, 'GradientThreshold',1);

% create the actor
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'state'},actorOpts);

Specify agent options, and create an AC agent using the environment, actor, and critic.

agentOpts = rlACAgentOptions('NumStepsToLookAhead',32, 'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent =
rlACAgent with properties:
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AgentOptions: [1x1 rl.option.rlACAgentOptions]

To check your agent, use getAction to return the action from a random observation.
getAction(agent,{rand(4,1)})

ans = -10

You can now test and train the agent against the environment.

See Also
rlACAgentOptions

Topics

“Actor-Critic Agents”

“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlACAgentOptions

Options for AC agent

Description

Use an rlACAgentOptions object to specify options for creating actor-critic (AC) agents. To create
an actor-critic agent, use rtACAgent

For more information see “Actor-Critic Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlACAgentOptions
rlACAgentOptions(Name,Value)

Description

opt = rlACAgentOptions creates a default option set for an AC agent. You can modify the object
properties using dot notation.

opt = rlACAgentOptions(Name,Value) sets option properties on page 2-7 using name-value
pairs. For example, rltDQNAgentOptions('DiscountFactor',0.95) creates an option set with a

discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

NumStepsToLookAhead — Number of steps ahead
1 (default) | positive integer

Number of steps to look ahead in model training, specified as a positive integer. For AC agents, the
number of steps to look ahead corresponds to the training episode length.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1, inclusive. A higher loss weight value
promotes agent exploration by applying a penalty for being too certain about which action to take.
Doing so can help the agent move out of local optima.

The entropy loss function for episode step t is:
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Here:

* Eis the entropy loss weight.
* M is the number of possible actions.
* (S is the probability of taking action A, when in state S, following the current policy.

When gradients are computed during training, an additional gradient component is computed for
minimizing this loss function.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlACAgent Actor-critic reinforcement learning agent

Examples

Create AC Agent Options Object

Create an AC agent options object, specifying the discount factor.

opt = rlACAgentOptions('DiscountFactor',0.95)
opt =
rlACAgentOptions with properties:
NumStepsToLookAhead: 1
EntropyLossWeight: 0
SampleTime: 1
DiscountFactor: 0.9500

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

See Also

Topics
“Actor-Critic Agents”
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Introduced in R2019a
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rIDDPGAgent

Deep deterministic policy gradient reinforcement learning agent

Description

The deep deterministic policy gradient (DDPG) algorithm is an actor-critic, model-free, online, off-
policy reinforcement learning method which computes an optimal policy that maximizes the long-
term reward.

For more information, see “Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlDDPGAgent(actor,critic,agentOptions)
Description

agent = rlDDPGAgent(actor,critic,agentOptions) creates a DDPG agent with the specified
actor and critic networks and sets the AgentOptions property.

Input Arguments

actor — Actor network representation
riDeterministicActorRepresentation object

Actor network representation, specified as an rlDeterministicActorRepresentation. For more
information on creating actor representations, see “Create Policy and Value Function
Representations”.

critic — Critic network representation
rlQValueRepesentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties

AgentOptions — Agent options
r DDPGAgentOptions object

Agent options, specified as an rIDDPGAgentOptions object.
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ExperienceBuffer — Experience buffer
ExperienceBuffer object

Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

* S is the current observation of the environment.

» A is the action taken by the agent.

* Ris the reward for taking action A.

» S'is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Deep Deterministic Policy Gradient Agents”.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create a DDPG Agent

Create a DDPG agent with actor and critic and obtain its observation and action specifications.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Continuous");

% get observation and specification info
obsInfo = getObservationInfo(env);
actInfo getActionInfo(env);

Create a critic representation.

% create a network to be used as underlying critic approximator

statePath = imagelInputLayer([obsInfo.Dimension(1l) 1 1], 'Normalization', 'none', 'Name', 'state’
actionPath = imageInputLayer([numel(actInfo) 1 1], 'Normalization', 'none', 'Name', ‘'action');
commonPath = [concatenationLayer(1l,2, 'Name', 'concat')

quadraticLayer('Name', 'quadratic')

fullyConnectedLayer(1, 'Name', 'StateValue', 'BiasLearnRateFactor', 0, 'Bias', 0)];

criticNetwork = layerGraph(statePath);

criticNetwork = addLayers(criticNetwork, actionPath);

criticNetwork = addLayers(criticNetwork, commonPath);

criticNetwork = connectlLayers(criticNetwork, 'state', 'concat/inl');
criticNetwork = connectlLayers(criticNetwork, 'action', 'concat/in2');
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% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',5e-3, 'GradientThreshold',1);

% create the critic based on the network approximator
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'}, 'Action',{'action'},criticOpts);

Create an actor representation.
% create a network to be used as underlying actor approximator

actorNetwork = [
imagelInputlLayer([obsInfo.Dimension(1l) 1 1], 'Normalization', 'none', 'Name',6 'state')

fullyConnectedLayer(numel(actInfo), 'Name', 'action', 'BiaslLearnRateFactor', 0, 'Bias', 0)];

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',le-04, 'GradientThreshold',1);

% create the actor based on the network approximator
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'state'}, 'Action',{'action'},actorOpts);

Specify agent options, and create a PG agent using the environment, actor, and critic.

agentOpts = rlDDPGAgentOptions(...
'SampleTime',env.Ts, ...
'TargetSmoothFactor',le-3,...
'ExperienceBufferLength',leb, ...
'DiscountFactor',0.99,...
'MiniBatchSize',32);

agent = rlDDPGAgent(actor,critic,agentOpts);

To check your agent, use getAction to return the action from a random observation.
getAction(agent, {rand(2,1)})

ans = single
-0.4719

You can now test and train the agent against the environment.

See Also
rlDDPGAgentOptions

Topics

“Deep Deterministic Policy Gradient Agents”
“Reinforcement Learning Agents”

“Train Reinforcement Learning Agents”

Introduced in R2019a
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riDDPGAgentOptions

Options for DDPG agent

Description

Use an rlDDPGAgentOptions object to specify options for deep deterministic policy gradient
(DDPG) agents. To create a DDPG agent, use rlDDPGAgent.

For more information, see “Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

r DDPGAgentOptions
r DDPGAgentOptions (Name,Value)

Description

opt = rlDDPGAgentOptions creates an options object for use as an argument when creating a
DDPG agent using all default options. You can modify the object properties using dot notation.

opt = rlDDPGAgentOptions(Name,Value) sets option properties on page 2-13 using name-
value pairs. For example, rIDDPGAgentOptions('DiscountFactor',0.95) creates an option set
with a discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property
name in quotes.

Properties

NoiseOptions — Noise model options
OrnsteinUhlenbeckActionNoise object

Noise model options, specified as an 0rnsteinUhlenbeckActionNoise object. For more
information on the noise model, see “Noise Model” on page 2-15.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different noise model parameters. If the actions have similar ranges and units, you
can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the variance of each action to a different value while
using the same decay rate for both variances.

opt = rlDDPGAgentOptions;

opt.ExplorationModel.Variance = [0.1 0.2];
opt.ExplorationModel.VarianceDecayRate = le-4;
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TargetSmoothFactor — Smoothing factor for target actor and critic updates
le-3 (default) | positive scalar less than or equal to 1

Smoothing factor for target actor and critic updates, specified as a positive scalar less than or equal
to 1. For more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target actor and critic updates
1 (default) | positive integer

Number of steps between target actor and critic updates, specified as a positive integer. For more
information, see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Flag for clearing the experience buffer
true (default) | false

Flag for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Flag for saving the experience buffer
false (default) | true

Flag for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.

For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

NumStepsToLookAhead — Number of steps ahead
1 (default) | positive integer

Number of steps to look ahead during training, specified as a positive integer.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent updates the actor
and critic using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.
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DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rIDDPGAgent Deep deterministic policy gradient reinforcement learning agent

Examples
Create DDPG Agent Options Object

This example shows how to create a DDPG agent option object.

Create an rlDDPGAgentOptions object that specifies the mini-batch size.

opt rlDDPGAgentOptions('MiniBatchSize"',48)
opt =
rlDDPGAgentOptions with properties:

NoiseOptions: [1x1 rl.option.OrnsteinUhlenbeckActionNoisel]
TargetSmoothFactor: 1.0000e-03
TargetUpdateFrequency: 1
ResetExperienceBufferBeforeTraining: 1
SaveExperienceBufferWithAgent: 0
MiniBatchSize: 48
NumStepsToLookAhead: 1
ExperienceBufferLength: 10000
SampleTime: 1
DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Algorithms
Noise Model

An OrnsteinUhlenbeckActionNoise object has the following numeric value properties.

Property Description

InitialAction Initial value of action for noise model

Mean Noise model mean

MeanAttractionConstant Constant specifying how quickly the noise model
output is attracted to the mean

Variance Noise model variance
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Property Description
VarianceDecayRate Decay rate of the variance
VarianceMin Minimum variance

At each sample time step, the noise model is updated using the following formula, where Ts is the
agent sample time.

x(k) = x(k-1) + MeanAttractionConstant.*(Mean - x(k-1)).*Ts
+ Variance.*randn(size(Mean)).*sqrt(Ts)

At each sample time step, the variance decays as shown in the following code.

decayedVariance = Variance.*(1 - VarianceDecayRate);
Variance = max(decayedVariance,VarianceMin);

For continuous action signals, it is important to set the noise variance appropriately to encourage
exploration. It is common to have Variance*sqrt(Ts) be between 1% and 10% of your action
range.

If your agent converges on local optima too quickly, promote agent exploration by increasing the
amount of noise; that is, by increasing the variance. Also, to increase exploration, you can reduce the
VarianceDecayRate.

Compatibility Considerations

Target update method settings for DDPG agents have changed
Behavior changed in R2020a

Target update method settings for DDPG agents have changed. The following changes require
updates to your code:

* The TargetUpdateMethod option has been removed. Now, DDPG agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option
values.

* The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1

Periodic Greater than 1 1

Periodic smoothing (new Greater than 1 Less than 1

method in R2020a)

The default target update configuration, which is a smoothing update with a TargetSmoothFactor
value of 0.001, remains the same.

Update Code

This table shows some typical uses of riDDPGAgentOptions and how to update your code to use the
new option configuration.
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Not Recommended

Recommended

opt rlDDPGAgentOptions('TargetUpdateMetha

opt"smodDPPGYYEntOptions;

opt rlDDPGAgentOptions('TargetUpdateMethd

optr"periddPGAyentOptions;
opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDDPGAgentOptions;
opt.TargetUpdateMethod = "periodic";
opt.TargetUpdateFrequency = 5;

opt = rlDDPGAgentOptions;
opt.TargetUpdateFrequency = 5;

opt.TargetSmoothFactor

1;

See Also

Topics
“Deep Deterministic Policy Gradient Agents

”

Introduced in R2019a
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riDeterministicActorRepresentation

Deterministic actor representation for reinforcement learning agents

Description

This object implements a function approximator to be used as a deterministic actor within a
reinforcement learning agent with a continuous action space. A deterministic actor takes
observations as inputs and returns as outputs the action that maximizes the expected cumulative
long-term reward, thereby implementing a deterministic policy. After you create an
rlDeterministicActorRepresentation object, use it to create a suitable agent, such as an
rlDDPGAgent agent. For more information on creating representations, see “Create Policy and Value
Function Representations”.

Creation

Syntax

actor = rlDeterministicActorRepresentation(net,observationInfo,
actionInfo, 'Observation',obsName, 'Action',actName)

actor = rlDeterministicActorRepresentation({basisFcn,W0},observationInfo,
actionInfo)

actor = rlDeterministicActorRepresentation(___ ,options)

Description

actor = rlDeterministicActorRepresentation(net,observationInfo,

actionInfo, 'Observation',obsName, 'Action',actName) creates a deterministic actor using
the deep neural network net as approximator. This syntax sets the ObservationInfo and ActionInfo
properties of actor to the inputs observationInfo and actionInfo, containing the specifications
for observations and actions, respectively. observationInfo must specify a continuous action
space, discrete action spaces are not supported. obsName must contain the names of the input layers
of net that are associated with the observation specifications. The action names actName must be
the names of the output layers of net that are associated with the action specifications.

actor = rlDeterministicActorRepresentation({basisFcn,W0},observationInfo,
actionInfo) creates a deterministic actor using a custom basis function as underlying
approximator. The first input argument is a two-elements cell in which the first element contains the
handle basisFcn to a custom basis function, and the second element contains the initial weight
matrix WO. This syntax sets the ObservationInfo and ActionInfo properties of actor respectively to
the inputs observationInfo and actionInfo.

actor = rlDeterministicActorRepresentation( _ ,options) creates a deterministic
actor using the additional options set options, which is an rlRepresentationOptions object.
This syntax sets the Options property of actor to theoptions input argument. You can use this
syntax with any of the previous input-argument combinations.
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Input Arguments

net — Deep neural network
array of Layer objects | LayerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the actor, specified as one of the
following:

* Array of Layer objects

* layerGraph object

* DAGNetwork object

* SeriesNetwork object

* dlnetwork object

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

The network output layer must have the same data type and dimension as the signal defined in
ActionInfo. Its name must be the action name specified in actName.

rlDeterministicActorRepresentation objects support recurrent deep neural networks.

For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).
For more information on creating deep neural networks for reinforcement learning, see “Create
Policy and Value Function Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.

Example: {'my obs'}

actName — Action name
string | character vector | single-element cell array containing a character vector

Action name, specified as a single-element cell array that contains a character vector. It must be the
name of the output layer of net.

Example: {'my act'}

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The action
to be taken based on the current observation, which is the output of the actor; is the vectora =

W' *B, where W is a weight matrix containing the learnable parameters and B is the column vector
returned by the custom basis function.

When creating a deterministic actor representation, your basis function must have the following
signature.
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B = myBasisFunction(obsl,obs2,...,o0bsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo

Example: @(obs1l,0bs2,0bs3) [obs3(2)*obsl(1)"2; abs(obs2(5)+obs3(1))]

WO — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a matrix having as many rows as the length
of the vector returned by the basis function and as many columns as the dimension of the action
space.

Properties

Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, a reinforcement learning specification object or an array of specification
objects defining properties such as dimensions, data type, and names of the observation signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rLNumericSpec.

ActionInfo — Action specifications
riNumericSpec object

Action specifications for a continuous action space, a riNumericSpec object defining properties
such as dimensions, data type and name of the action signals. The deterministic actor representation
does not support discrete actions.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using ritNumericSpec.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

Object Functions

rIDDPGAgent Deep deterministic policy gradient reinforcement learning agent

rITD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent
getAction Obtain action from agent or actor representation given environment observations

Examples
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Create Deterministic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]1);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 1]);

Create a deep neural network approximator for the actor. The input of the network (here called
myobs) must accept a four-dimensional vector (the observation vector just defined by obsInfo), and
its output must be the action (here called myact) and be a two-dimensional vector, as defined by
actInfo.

net = [imagelnputlLayer([4 1 1], 'Normalization', 'none', 'Name', 'myobs"')
fullyConnectedLayer(2, 'Name', 'myact')];

Create the critic with rlQValueRepresentation, using the network, the observations and action
specification objects, as well as the names of the network input and output layers.

actor = rlDeterministicActorRepresentation(net,obsInfo,actInfo,
'Observation',{'myobs'}, 'Action',{'myact'})

actor =
rlDeterministicActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlNumericSpec]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use getAction to return the action from a random observation, using the
current network weights.

act = getAction(actor,{rand(4,1)}); act{1l}
ans = 2x1 single column vector

-0.5054

1.5390

You can now use the actor to create a suitable agent (such as an rlACAgent, rlPGAgent, or
rlDDPGAgent agent).

Create Deterministic Actor from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
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continuous four-dimensional space, so that a single observation is a column vector containing 3
doubles.

obsInfo = rlNumericSpec([3 1]1);

The deterministic actor does not support discrete action spaces. Therefore, create a continuous
action space specification object (or alternatively use getActionInfo to extract the specification
object from an environment). For this example, define the action space as a continuous two-
dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 11);

Create a custom basis function. Each element is a function of the observations defined by obsInfo.
myBasisFcn = @(myobs) [myobs(2)”2; myobs(1l); 2*myobs(2)+myobs(1l); -myobs(3)]

myBasisFcn = function handle with value:
@(myobs) [myobs(2)”~2;myobs(1);2*myobs(2)+myobs(1);-myobs(3)]

The output of the actor is the vector W' *myBasisFcn(myobs), which is the action taken as a result
of the given observation. The weight matrix W contains the learnable parameters and must have as
many rows as the length of the basis function output and as many columns as the dimension of the
action space.

Define an initial parameter matrix.
WO = rand(4,2);

Create the actor. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight matrix. The second and third arguments are, respectively, the
observation and action specification objects.

actor = rlDeterministicActorRepresentation({myBasisFcn,W0},obsInfo,actInfo)

actor =
rlDeterministicActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlNumericSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use the getAction function to return the action from a given observation, using
the current parameter matrix.

a = getAction(actor,{[1 2 3]'});
a{l}

ans =
2x1 dlarray

2.0595
2.3788

You can now use the actor (along with an critic) to create a suitable continuous action space agent.
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Create Deterministic Actor from Recurrent Neural Network

Create observation and action information. You can also obtain these specifications from an
environment.

obsinfo = rlNumericSpec([4 1]);
actinfo = rlNumericSpec([2 1]);
numObs = obsinfo.Dimension(1);
numAct = actinfo.Dimension(1);

Create a recurrent deep neural network for the actor. To create a recurrent neural network, use a
sequencelInputLayer as the input layer and include at least one LstmLayer.

net = [sequencelnputLayer(numObs, 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer (10, 'Name', 'fcl')
reluLayer('Name', 'relul')
lstmLayer(8, 'OutputMode', 'sequence', 'Name', 'ActorLSTM")
fullyConnectedlLayer(20, 'Name', 'CriticStateFC2")
fullyConnectedLayer (numAct, 'Name', 'action')
tanhLayer('Name', 'tanhl')];

Create a deterministic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(net,obsinfo,actinfo,...
'Observation',{'state'}, 'Action',{'tanhl'});

See Also

Functions
getActionInfo | getObservationInfo | rlRepresentationOptions

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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riDQNAgent

Deep Q-network reinforcement learning agent

Description

The deep Q-network (DQN) algorithm is a model-free, online, off-policy reinforcement learning
method. A DQN agent is a value-based reinforcement learning agent that trains a critic to estimate
the return or future rewards. DQN is a variant of Q-learning.

For more information, “Deep Q-Network Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlDQNAgent(critic,agentOptions)
Description

agent = rlDQNAgent(critic,agentOptions) creates a DQN agent with the specified critic
network and sets the AgentOptions property.

Input Arguments

critic — Critic network representation
rlQValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Your critic representation can use a recurrent neural network as its function approximator. However,
only the multi-output Q-value function representation supports recurrent neural networks. For an
example, see “Create DQN Agent with Recurrent Neural Network” on page 2-26.

Properties

AgentOptions — Agent options
rlDQNAgentOptions object

Agent options, specified as an rlDQNAgentOptions object.

ExperienceBuffer — Experience buffer
ExperienceBuffer object
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Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

* S is the current observation of the environment.

» A s the action taken by the agent.

* Ris the reward for taking action A.

* S'is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Deep Q-Network Agents”.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create a DQN Agent

Create an environment interface and obtain its observation and action specifications. For this
environment load the predefined environment used for the discrete cart-pole system.

% load predefined environment
env = rlPredefinedEnv("CartPole-Discrete");

% get observation and specification info
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

[)

% create a critic network to be used as underlying approximator
statePath = [

imagelInputLayer([4 1 1], 'Normalization', ‘'none', 'Name', 'state')
fullyConnectedLayer(24, 'Name', 'CriticStateFCl")
reluLayer('Name', 'CriticRelul')

fullyConnectedlLayer(24, 'Name', 'CriticStateFC2'")];
actionPath = [
imagelInputLayer([1 1 1], 'Normalization', ‘'none', 'Name', 'action')
fullyConnectedLayer(24, 'Name', 'CriticActionFC1l')];
commonPath = [
additionLayer(2, 'Name', 'add')
reluLayer('Name', 'CriticCommonRelu")
fullyConnectedLayer(1l, 'Name', 'output')];
criticNetwork = layerGraph(statePath);
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criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectlLayers(criticNetwork, 'CriticStateFC2', 'add/inl"');
criticNetwork = connectlLayers(criticNetwork, 'CriticActionFC1l','add/in2");

% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',0.01, 'GradientThreshold',1);

% create the critic based on the network approximator
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'}, 'Action',{'action'},criticOpts);

Specify agent options, and create a DQN agent using the environment and critic.

agentOpts = rlDQNAgentOptions(...
'"UseDoubleDQN', false,
'TargetUpdateMethod', "periodic",
'TargetUpdateFrequency',4, ...
'ExperienceBufferLength', 100000,
'DiscountFactor',0.99,
'MiniBatchSize',256);

agent rlDQNAgent(critic,agentOpts)

agent =
rlDQNAgent with properties:

AgentOptions: [1x1 rl.option.rlDQNAgentOptions]
ExperienceBuffer: [1x1 rl.util.ExperienceBuffer]

To check your agent, use getAction to return the action from a random observation.
getAction(agent,{rand(4,1)})
ans = 10

You can now test and train the agent against the environment.

Create DQN Agent with Recurrent Neural Network

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for your critic. To create a recurrent neural network, use a
sequencelInputLayer as the input layer and include an lstmLayer as one of the other network
layers.

For DQN agents, only the multi-output Q-value function representation supports recurrent neural
networks.

2-26



rIDQNAgent

criticNetwork = [
sequencelnputlLayer(numObs, '‘Normalization', 'none', 'Name', 'state')
fullyConnectedLayer (50, 'Name', 'CriticStateFCl')
reluLayer('Name', 'CriticRelul"')
lstmLayer(20, 'OutputMode', 'sequence', 'Name', 'CriticLSTM");
fullyConnectedLayer(20, 'Name', 'CriticStateFC2")
reluLayer('Name', 'CriticRelu2"')
fullyConnectedlLayer(numDiscreteAct, 'Name', 'output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation', 'state',criticOptions);

Specify options for creating the DQN agent. To use a recurrent neural network, you must specify a
SequencelLength greater than 1.

agentOptions = rlDQNAgentOptions(...

'"UseDoubleDQN', false,

'TargetSmoothFactor',5e-3,

'"ExperienceBufferLength', le6,

'SequencelLength',20);
agentOptions.EpsilonGreedyExploration.EpsilonDecay = le-4;
agent = rlDQNAgent(critic,agentOptions);

See Also
rlDQNAgentOptions

Topics
“Deep Q-Network Agents”

“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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riDQNAgentOptions

Options for DQN agent

Description

Use an rlDQNAgentOptions object to specify options for deep Q-network (DQN) agents. To create a
DQN agent, use rtDQNAgent.

For more information, see “Deep Q-Network Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlDQNAgentOptions
rlDQNAgentOptions (Name, Value)

Description

opt = rlDQNAgentOptions creates an options object for use as an argument when creating a DQN
agent using all default settings. You can modify the object properties using dot notation.

opt = rlDQNAgentOptions(Name,Value) sets option properties on page 2-28 using name-value
pairs. For example, rltDQNAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

UseDoubleDQN — Flag for using double DQN
true (default) | false

Flag for using double DQN for value function target updates, specified as a logical value. For most
application set UseDoub1eDQN to "on". For more information, see “Deep Q-Network Agents”.

EpsilonGreedyExploration — Options for epsilon-greedy exploration
EpsilonGreedyExploration object

Options for epsilon-greedy exploration, specified as an EpsilonGreedyExploration object with the
following properties.
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Property Description

Epsilon Probability threshold to either randomly select an
action or select the action that maximizes the
state-action value function. A larger value of
Epsilon means that the agent randomly
explores the action space at a higher rate.

EpsilonMin Minimum value of Epsilon

EpsilonDecay Decay rate

At the end of each training time step, if Epsilon is greater than EpsilonMin, then it is updated
using the following formula.

Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the rtDQNAgentOptions object. For
example, set the epsilon value to 0.9.

opt = rlDQNAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;

If your agent converges on local optima too quickly, promote agent exploration by increasing
Epsilon.

SequenceLength — Maximum batch-training trajectory length when using RNN
1 (default) | positive integer

Maximum batch-training trajectory length when using a recurrent neural network for the critic,
specified as a positive integer. This value must be greater than 1 when using a recurrent neural
network for the critic and 1 otherwise.

TargetSmoothFactor — Smoothing factor for target critic updates
le-3 (default) | positive scalar less than or equal to 1

Smoothing factor for target critic updates, specified as a positive scalar less than or equal to 1. For
more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target critic updates
1 (default) | positive integer

Number of steps between target critic updates, specified as a positive integer. For more information,
see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Flag for clearing the experience buffer
true (default) | false

Flag for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Flag for saving the experience buffer
false (default) | true

Flag for saving the experience buffer data when saving the agent, specified as a logical value. This

option applies both when saving candidate agents during training and when saving agents using the
save function.
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For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

When using a recurrent neural network for the critic, MiniBatchSize is the number of experience
trajectories in a batch, where each trajectory has length equal to SequencelLength.

NumStepsToLookAhead — Number of steps ahead
1 (default) | positive integer

Number of steps to look ahead during training, specified as a positive integer.

N-step Q learning is not supported when using a recurrent neural network for the critic. In this case,
NumStepsToLookAhead must be 1.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent updates the critic
using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rIDQNAgent Deep Q-network reinforcement learning agent

Examples

Create DQN Agent Options Object
This example shows how to create a DQN agent options object.

Create an rlDQNAgentOptions object that specifies the agent mini-batch size.
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opt = rlDQNAgentOptions('MiniBatchSize',48)

opt =
rlDQNAgentOptions with properties:

UseDoubleDQN: 1
EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
SequencelLength: 1
TargetSmoothFactor: 1.0000e-03
TargetUpdateFrequency: 1
ResetExperienceBufferBeforeTraining: 1
SaveExperienceBufferWithAgent: 0
MiniBatchSize: 48
NumStepsToLookAhead: 1
ExperienceBufferLength: 10000
SampleTime: 1
DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Compatibility Considerations

Target update method settings for DQN agents have changed
Behavior changed in R2020a

Target update method settings for DQN agents have changed. The following changes require updates
to your code:

* The TargetUpdateMethod option has been removed. Now, DQN agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option
values.

* The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1

Periodic Greater than 1 1

Periodic smoothing (new Greater than 1 Less than 1

method in R2020a)

The default target update configuration, which is a smoothing update with a TargetSmoothFactor
value of 0.001, remains the same.

Update Code

This table shows some typical uses of rtDQNAgentOptions and how to update your code to use the
new option configuration.
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Not Recommended Recommended

opt = rlDQNAgentOptions('TargetUpdateMethodobp'tsmoatbQNdyentOptions;

opt = rlDQNAgentOptions('TargetUpdateMethodobp'tperrd®QiAyentOptions;
opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDQNAgentOptions; opt = rlDQNAgentOptions;

opt.TargetUpdateMethod = "periodic"; opt.TargetUpdateFrequency = 5;

opt.TargetUpdateFrequency = 5; opt.TargetSmoothFactor = 1;

See Also

Topics

“Deep Q-Network Agents”

Introduced in R2019a
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rIFiniteSetSpec

Create discrete action or observation data specifications for reinforcement learning environments

Description

An rlFiniteSetSpec object specifies discrete action or observation data specifications for
reinforcement learning environments.

Creation

Syntax
spec = rlFiniteSetSpec(elements)
Description

spec = rlFiniteSetSpec(elements) creates a data specification with a discrete set of actions or
observations, setting the Elements property.

Properties

Elements — Set of valid actions or observations
vector | cell array

Set of valid actions or observations for the environment, specified as one of the following:

* Vector — Specify valid numeric values for a single action or single observation.

* Cell array — Specify valid numeric value combinations when you have more than one action or
observation. Each entry of the cell array must have the same dimensions.

Name — Name of the rlFiniteSetSpec object
string (default)

Name of the rlFiniteSetSpec object, specified as a string. Use this property to set a meaningful
name for your finite set.

Description — Description of the rlFiniteSetSpec object
string (default)

Description of the rlFiniteSetSpec object, specified as a string. Use this property to specify a
meaningful description of the finite set values.

Dimension — Size of each element
vector (default)

This property is read-only.

Size of each element, specified as a vector.
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If you specify Elements as a vector, then Dimensionis [1 1]. Otherwise, if you specify a cell array,
then Dimension indicates the size of the entries in Elements.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions

rISimulinkEnv Create a reinforcement learning environment using a dynamic model
implemented in Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions

rIRepresentation (Not recommended) Model representation for reinforcement learning agents

Examples

Reinforcement Learning Environment for Simulink models

For this example, consider the ri1SimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that is initially hanging in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel’;
open_system(mdl)

Assign the agent block path information, and create riNumericSpec and rlFiniteSetSpec objects
for the observation and action information. You can use dot notation to assign property values of the
riNumericSpec and rlFiniteSetSpec objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = rlNumericSpec([3 11)

obsInfo =
riNumericSpec with properties:

LowerLimit: -Inf
UpperLimit: Inf
Name: [0Ox0 string]
Description: [0x0 string]
Dimension: [3 1]
DataType: "double"

actInfo = rlFiniteSetSpec([2 1])

actInfo =
rlFiniteSetSpec with properties:

Elements: [2x1 double]

Name: [0x0 string]

Description: [0x0 string]
Dimension: [1 1]
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DataType: "double"

obsInfo.Name
actInfo.Name

'observations';
‘torque’;

Create the reinforcement learning environment for the Simulink model using information extracted in
the previous steps.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: []
UseFastRestart: 'on'

You can also include a reset function using dot notation. For this example, consider randomly
initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in, 'theta0®', randn, 'Workspace',mdl)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: @(in)setVariable(in, 'theta@', randn, 'Workspace',mdl)
UseFastRestart: 'on'

Specify Discrete Value Set for Multiple Actions

If the actor for your reinforcement learning agent has multiple outputs, each with a discrete action
space, you can specify the possible discrete actions combinations using an rlFiniteSetSpec object.

Suppose that the valid values for a two-output system are [1 2] for the first output and [10 20 30]
for the second output. Create a discrete action space specification for all possible input combinations.

actionSpec = rlFiniteSetSpec({[1 10],[1 20],[1 301,...
[2 10],[2 20],[2 30]})

actionSpec =
rlFiniteSetSpec with properties:

Elements: {6x1 cell}
Name: [0x0 string]
Description: [0x0 string]
Dimension: [1 2]
DataType: "double"
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See Also
getActionInfo | getObservationInfo | rlFunctionEnv | riNumericSpec |
rlRepresentation | rlSimulinkEnv

Introduced in R2019a
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rlFunctionEnv

Specify custom reinforcement learning environment dynamics using functions

Description

Use rlFunctionEnv to define a custom reinforcement learning environment. You provide MATLAB
functions that define the step and reset behavior for the environment. This object is useful when you
want to customize your environment beyond the predefined environments available with
rlPredefinedEnv.

Creation

Syntax
env = rlFunctionEnv(obsInfo,actInfo,stepfcn, resetfcn)
Description

env = rlFunctionEnv(obsInfo,actInfo,stepfcn, resetfcn) creates a reinforcement
learning environment using the observation specification and agent specification you provide. You
also provide your own MATLAB functions that define step and reset behavior for the environment.

Input Arguments

obsInfo — Observation specification
spec object

Observation specification, specified as a reinforcement learning spec object created with a spec
command such as rlFiniteSetSpec or rlNumericSpec. This specification defines such
information about the observations as the dimensions and names of the observation signals.

actInfo — Action specification
spec object

Action specification, specified as a reinforcement learning spec object created with a spec command
such as rlFiniteSetSpec or rlNumericSpec. The specification defines such information about the
actions as the dimensions and names of the action signals.

stepfcn — Step behavior for the environment
function | function handle | anonymous function

Step behavior for the environment, specified as a function, function handle, or anonymous function.
stepfcn sets the value of the StepFcn property.

resetfcn — Reset behavior for the environment
function | function handle | anonymous function

Reset behavior for the environment, specified as a function, function handle, or anonymous function.
resetfcn sets the value of the ResetFcn property.
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Properties

StepFcn — Step behavior for the environment
function | function handle | anonymous function

Step behavior for the environment, specified as a function, function handle, or anonymous function.
When you create an rLFunctionEnv object, the stepfcn input argument sets the value of this
property.

StepFcn is a function that you provide which describes how the environment advances to the next
state from a given action. This function must have two inputs and four outputs, as illustrated by the
following signature:

[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

Thus, the step function computes the values of the observation and reward for the given action in the
environment. The required input and output arguments are:

* Action and Observation — The current action and the returned observation. These values must
match the dimensions and data types specified in actInfo and obsInfo, respectively.

* Reward — Reward for the current step, returned as a scalar value.

* IsDone — Logical value indicating whether to end the simulation episode. The step function that
you define can include logic to decide whether to end the simulation based on the observation,
reward, or any other values.

* LoggedSignals — Any data that you want to pass from one step to the next, specified as a
structure.

To use additional input arguments beyond this required set, specify StepFcn using a function handle
or an anonymous function. For an example showing multiple ways to define a step function, see
“Create MATLAB Environment Using Custom Functions”.

ResetFcn — Reset behavior for the environment
function | function handle | anonymous function

Reset behavior for the environment, specified as a function, function handle, or anonymous function.
When you create a rLFunctionEnv object, the resetfcn input argument sets the value of this
property.

The reset function that you provide must have no inputs and two outputs, as illustrated by the
following signature.

[InitialObservation,LoggedSignals] = myResetFunction

Thus, the reset function computes the initial values of the observation signals. For instance, sim calls
the reset function to reset the environment at the start of each simulation, and train calls it at the
start of each training episode. Therefore, you might create a reset function that randomizes certain
state values, such that each training episode begins from different initial conditions.

The InitialObservation output must match the dimensions and data type of obsInfo.

To pass information from the reset condition into the first step, specify that information in the reset
function as the output structure LoggedSignals.
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To use input arguments with your reset function, specify ResetFcn using a function handle or an
anonymous function. For an example showing multiple ways to define a reset function, see “Create
MATLAB Environment Using Custom Functions”.

LoggedSignals — Information to pass to next step
structure

Information to pass to the next step, specified as a structure. When you create the environment,
whatever you define as the LoggedSignals output of resetfcn initializes this property. When a
step occurs, the software populates this property with data to pass to the next step, as defined in
stepfcn.

Object Functions

getActionInfo Obtain action data specifications from reinforcement learning environment or
agent

getObservationInfo Obtain observation data specifications from reinforcement learning
environment or agent

sim Simulate a trained reinforcement learning agent within a specified
environment

validateEnvironment Validate custom reinforcement learning environment

Examples

Create Custom MATLAB Environment

Create a reinforcement learning environment by supplying custom dynamic functions in MATLAB®.
Using rlFunctionEnv, you can create a MATLAB reinforcement learning environment from an
observation specification, action specification, and step and reset functions that you define.

For this example, create an environment that represents a system for balancing a cart on a pole. The
observations from the environment are the cart position, cart velocity, pendulum angle, and
pendulum angle derivative. (For additional details about this environment, see “Create MATLAB
Environment Using Custom Functions”.) Create an observation specification for those signals.

oinfo = rlNumericSpec([4 1]);

oinfo.Name = 'CartPole States';
oinfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two possible force
values to the cart, -10 N or 10 N. Create the action specification for those actions.

ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

Next, specify the custom step and reset functions. For this example, use the supplied functions
myResetFunction.mand myStepFunction.m. For details about these functions and how they are
constructed, see “Create MATLAB Environment Using Custom Functions”.

Construct the custom environment using the defined observation specification, action specification,
and function names.

env = rlFunctionEnv(oinfo,ActionInfo, 'myStepFunction', 'myResetFunction');
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You can create agents for env and train them within the environment as you would for any other
reinforcement learning environment.

As an alternative to using function names, you can specify the functions as function handles. For
more details and an example, see “Create MATLAB Environment Using Custom Functions”.

See Also
rliCreateEnvTemplate | rlPredefinedEnv

Topics
“Create MATLAB Environment Using Custom Functions”

Introduced in R2019a
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rIMDPENv

Create Markov decision process environment for reinforcement learning

Description

A Markov decision process (MDP) is a discrete time stochastic control process. It provides a
mathematical framework for modeling decision making in situations where outcomes are partly
random and partly under the control of the decision maker. MDPs are useful for studying optimization
problems solved using reinforcement learning. Use rlMDPENv to create a Markov decision process
environment for reinforcement learning in MATLAB.

Creation

Syntax
env = rlMDPEnv(MDP)
Description

env = rlMDPEnv (MDP) creates a reinforcement learning environment env with the specified MDP
model.

Input Arguments

MDP — Markov decision process model
GridWorld object | GenericMDP object

Markov decision process model, specified as one of the following:

* GridWorld object created using createGridWorld.
* GenericMDP object created using createMDP.
Properties

Model — Markov decision process model
GridWorld object | GenericMDP object

Markov decision process model, specified as a GridWorld object or GenericMDP object.

ResetFcn — Reset function
function handle

Reset function, specified as a function handle.
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Object Functions

getActionInfo Obtain action data specifications from reinforcement learning environment or
agent

getObservationInfo Obtain observation data specifications from reinforcement learning
environment or agent

sim Simulate a trained reinforcement learning agent within a specified
environment
train Train a reinforcement learning agent within a specified environment

validateEnvironment Validate custom reinforcement learning environment

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South = 2, East = 3,
West = 4).

The agent begins from cell [2,1] (second row, first column).

The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).

The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.

The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).

All other actions result in -1 reward.

N U A WN

+10| Actions

First, create a GridWorld object using the createGridWorld function.
GW = createGridWorld(5,5)

GW =
GridwWorld with properties:
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GridSize: [5 5]
CurrentState: "[1,1]1"

States: [25x1 string]
Actions: [4x1 string]

T: [25x25x4 double]

R: [25x25x4 double]
ObstacleStates: [0x1 string]
TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.

GW.CurrentState = '[2,1]";
GW.TerminalStates '[5,51";
GW.ObstacleStates [“13,31";"13,41";"13,51";"[4,31"1;

Update the state transition matrix for the obstacle states and set the jump rule over the obstacle

states.

updateStateTranstionForObstacles (GW)
GW.T(state2idx(GW,"[2,41"),:,:) = 0;

GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;
Next, define the rewards in the reward transition matrix.

nS = numel (GW.States);

nA = numel (GW.Actions);

GW.R = -1*ones(nS,nS,nA);
GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rIMDPEnNv to create a grid world environment using the GridWorld object GW.

env = rlMDPEnv(GW)

env =
rlMDPEnv with properties:

Model: [1x1 rl.env.GridWorld]
ResetFcn: []
You can visualize the grid world environment using the plot function.

plot(env)
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See Also
createGridWorld | rlPredefinedEnv

Topics

“Train Reinforcement Learning Agent in Basic Grid World”
“Create Custom Grid World Environments”

“Train Reinforcement Learning Agent in MDP Environment”

Introduced in R2019a
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rINumericSpec

Create continuous action or observation data specifications for reinforcement learning environments

Description

An rlNumericSpec object specifies continuous action or observation data specifications for
reinforcement learning environments.

Creation

Syntax

spec
spec

riNumericSpec(dimension)
riNumericSpec(dimension,Name,Value)

Description

spec = rlNumericSpec(dimension) creates a data specification for continuous actions or
observations and sets the Dimension property.

spec = rlNumericSpec(dimension,Name,Value) sets “Properties” on page 2-45 using name-
value pair arguments.

Properties

LowerLimit — Lower limit of the data space
"-inf' (default) | scalar | matrix

Lower limit of the data space, specified as a scalar or matrix of the same size as the data space. When
LowerLimit is specified as a scalar, riNumericSpec applies it to all entries in the data space.

UpperLimit — Upper limit of the data space
"inf' (default) | scalar | matrix

Upper limit of the data space, specified as a scalar or matrix of the same size as the data space. When
UpperLimit is specified as a scalar, riINumericSpec applies it to all entries in the data space.

Name — Name of the rlNumericSpec object
string (default)

Name of the riNumericSpec object, specified as a string.

Description — Description of the rliNumericSpec object
string (default)

Description of the rtNumericSpec object, specified as a string.
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Dimension — Dimension of the data space
numeric vector (default)

This property is read-only.
Dimension of the data space, specified as a numeric vector.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions

rISimulinkEnv Create a reinforcement learning environment using a dynamic model
implemented in Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions

rIRepresentation (Not recommended) Model representation for reinforcement learning agents

Examples

Reinforcement Learning Environment for Simulink models

For this example, consider the r1SimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that is initially hanging in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel’;
open system(mdl)

Assign the agent block path information, and create riNumericSpec and rlFiniteSetSpec objects
for the observation and action information. You can use dot notation to assign property values of the
riNumericSpec and rlFiniteSetSpec objects.

agentBlk = [mdl '/RL Agent'];
obsInfo = rlNumericSpec([3 1])

obsInfo =
riNumericSpec with properties:

LowerLimit: -Inf
UpperLimit: Inf
Name: [0Ox0 string]
Description: [0x0 string]
Dimension: [3 1]
DataType: "double"

actInfo

rlFiniteSetSpec([2 1])

actInfo =
rlFiniteSetSpec with properties:
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Elements: [2x1 double]
Name: [0x0 string]
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

obsInfo.Name
actInfo.Name

'observations';
‘torque’;

Create the reinforcement learning environment for the Simulink model using information extracted in
the previous steps.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: []
UseFastRestart: 'on'

You can also include a reset function using dot notation. For this example, consider randomly
initializing theta0 in the model workspace.

env.ResetFcn = @(in) setVariable(in, 'theta®', randn, 'Workspace',mdl)

env =
SimulinkEnvWithAgent with properties:

Model: "rlSimplePendulumModel"
AgentBlock: "rlSimplePendulumModel/RL Agent"
ResetFcn: @(in)setVariable(in, 'theta@', randn, 'Workspace',mdl)
UseFastRestart: 'on'

See Also
getActionInfo | getObservationInfo | rlFiniteSetSpec | rlFunctionEnv |
rlRepresentation | rlSimulinkEnv

Topics
“Train DDPG Agent for Adaptive Cruise Control”

Introduced in R2019a
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riPGAgent

Policy gradient reinforcement learning agent

Description

The policy gradient (PG) algorithm is a model-free, online, on-policy reinforcement learning method.
A PG agent is a policy-based reinforcement learning agent which directly computes an optimal policy
that maximizes the long-term reward.

For more information on PG agents, see “Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

agent = rlPGAgent(actor)

agent = rlPGAgent(actor,critic)
agent = rlPGAgent(  ,agentOptions)
Description

agent = rlPGAgent(actor) creates a PG agent with the specified actor network. By default, the
UseBaseline property of the agent is false in this case.

agent = rlPGAgent(actor,critic) creates a PG agent with the specified actor and critic
networks. By default, the UseBaseline option is true in this case.

agent = rlPGAgent(  ,agentOptions) creates a PG agent and sets the AgentOptions
property.

Input Arguments

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation, specified as an rlStochasticActorRepresentation. For more
information on creating actor representations, see “Create Policy and Value Function
Representations”.

critic — Critic network representation
rlValueRepresentation object

Critic network representation, specified as an rlValueRepresentation object. For more

information on creating critic representations, see “Create Policy and Value Function
Representations”.
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Properties

AgentOptions — Agent options
rlPGAgentOptions object

Agent options, specified as an rlPGAgentOptions object.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create a PG Agent

Create an environment interface.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Discrete");

% get observation and specification info
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation to use as a baseline.

% create a network to be used as underlying critic approximator
baselineNetwork = [
imagelInputlLayer([obsInfo.Dimension(1l) 1 1], 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(8, 'Name', 'BaselineFC')
reluLayer('Name', 'CriticRelul')
fullyConnectedlLayer(1l, 'Name', 'BaselineF(C2', 'BiaslLearnRateFactor', 0)];

% set some options for the critic
baselineOpts = rlRepresentationOptions('LearnRate',5e-3, 'GradientThreshold',1);

% create the critic based on the network approximator
baseline = rlValueRepresentation(baselineNetwork,obsInfo, 'Observation',{'state'}, baselinelpts);

Create an actor representation.

% create a network to be used as underlying actor approximator

actorNetwork = [
imagelInputLayer([obsInfo.Dimension(1l) 1 1], ‘Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(numel(actInfo.Elements), 'Name', 'action', 'BiasLearnRateFactor', 0)];

% set some options for the actor
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actorOpts = rlRepresentationOptions('LearnRate',5e-3, 'GradientThreshold',1);

% create the actor based on the network approximator
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'state'},actorOpts);

Specify agent options, and create a PG agent using the environment, actor, and critic.
agentOpts = rlPGAgentOptions(...
'UseBaseline', true,

'DiscountFactor', 0.99);
agent = rlPGAgent(actor,baseline,agentOpts)

agent =
rlPGAgent with properties:

AgentOptions: [1x1 rl.option.rlPGAgentOptions]

To check your agent, use getAction to return the action from a random observation.
getAction(agent,{rand(2,1)})
ans = -2

You can now test and train the agent against the environment.

See Also
rlPGAgentOptions

Topics
“Policy Gradient Agents”

“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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riPGAgentOptions

Options for policy gradient agent

Description

Use an rlPGAgentOptions object to specify options for policy gradient (PG) agents. To create a PG
agent, use rlPGAgent

For more information on PG agents, see “Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlPGAgentOptions
rlPGAgentOptions (Name,Value)

Description

opt = rlPGAgentOptions creates an rlPGAgentOptions object for use as an argument when
creating a PG agent using all default settings. You can modify the object properties using dot
notation.

opt = rlPGAgentOptions(Name,Value) sets option properties on page 2-51 using name-value
pairs. For example, rlPGAgentOptions('DiscountFactor',0.95) creates an option set with a

discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

UseBaseline — Use baseline for learning
true (default) | false

Instruction to use baseline for learning, specified as a logical values. When UseBaseline is true, you
must specify a critic network as the baseline function approximator.

In general, for simpler problems with smaller actor networks, PG agents work better without a
baseline.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.
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DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher loss weight value promotes
agent exploration by applying a penalty for being too certain about which action to take. Doing so can
help the agent move out of local optima.

The entropy loss function for episode step t is:
M
Hy=E kzlﬂk(5t|9u)lnﬂk(5t|9u)

Here:

* E is the entropy loss weight.
* M is the number of possible actions.
* (S is the probability of taking action A, following the current policy.

When gradients are computed during training, an additional gradient component is computed for
minimizing this loss function.

Object Functions
rlPGAgent Policy gradient reinforcement learning agent

Examples

Create PG Agent Options Object
This example shows how to create and modify a PG agent options object.

Create a PG agent options object, specifying the discount factor.

opt = rlPGAgentOptions('DiscountFactor',0.9)

opt =
rlPGAgentOptions with properties:
UseBaseline: 1
EntropyLossWeight: 0
SampleTime: 1
DiscountFactor: 0.9000

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;
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See Also

Topics
“Policy Gradient Agents”

Introduced in R2019a
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riPPOAgent

Proximal policy optimization reinforcement learning agent

Description

The proximal policy optimization (PPO) is a model-free, online, on-policy, policy gradient
reinforcement learning method. This algorithm alternates between sampling data through
environmental interaction and optimizing a clipped surrogate objective function using stochastic
gradient descent.

For more information on PPO agents, see “Proximal Policy Optimization Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlPPOAgent(actor,critic,agentOptions)
Description

agent = rlPPOAgent(actor,critic,agentOptions) creates a proximal policy optimization
(PPO) agent with the specified actor and critic networks and sets the AgentOptions property.

Input Arguments

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation for the policy, specified as an rlStochasticActorRepresentation
object. For more information on creating actor representations, see “Create Policy and Value
Function Representations”.

Your actor representation can use a recurrent neural network as its function approximator. In this
case, your critic must also use a recurrent neural network. For an example, see “Create PPO Agent
with Recurrent Neural Networks” on page 2-56.

critic — Critic network representation
rlValueRepresentation object

Critic network representation for estimating the discounted long-term reward, specified as an
rlValueRepresentation. For more information on creating critic representations, see “Create
Policy and Value Function Representations”.

Your critic representation can use a recurrent neural network as its function approximator. In this
case, your actor must also use a recurrent neural network. For an example, see “Create PPO Agent
with Recurrent Neural Networks” on page 2-56.
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Properties

AgentOptions — Agent options
rlPPOAgentOptions object

Agent options, specified as an rlPPOAgentOptions object.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create Proximal Policy Optimization Agent

Create an environment interface, and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo getObservationInfo(env);
actInfo getActionInfo(env);

Create a critic representation.

% create the network to be used as approximator in the critic
criticNetwork = [
imagelInputlLayer([4 1 1], 'Normalization', 'none', 'Name', 'state"')
fullyConnectedLayer (1, 'Name', 'CriticFC')];

% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3, 'GradientThreshold',1);

% create the critic
critic = rlValueRepresentation(criticNetwork,obsInfo, 'Observation',{'state'},criticOpts);

Create an actor representation.

% create the network to be used as approximator in the actor
actorNetwork = [
imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state"')
fullyConnectedLayer(2, 'Name', 'action')];

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',8e-3, 'GradientThreshold',1);

% create the actor

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'state'},actorOpts);
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Specify agent options, and create a PPO agent using the environment, actor, and critic.

agentOpts = rlPPOAgentOptions(...
'ExperienceHorizon',1024,
'DiscountFactor',0.95);

agent = rlPPOAgent(actor,critic,agentOpts)

agent =
rlPPOAgent with properties:

AgentOptions: [1x1 rl.option.r1lPPOAgentOptions]

To check your agent, use getAction to return the action from a random observation.
getAction(agent,{rand(4,1)})

ans = -10

You can now test and train the agent against the environment.

Create PPO Agent with Recurrent Neural Networks

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for the critic. To create a recurrent neural network, use a
sequencelInputLayer as the input layer and include an lstmLayer as one of the other network
layers.

criticNetwork = [
sequencelnputLayer(numObs, '‘Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(8, 'Name', 'fc')
reluLayer('Name', 'relu')
lstmLayer(8, 'OutputMode', 'sequence', 'Name', 'lstm")
fullyConnectedLayer(1, 'Name', 'output')];

Create a value function representation object for the critic.

criticOptions = rlRepresentationOptions('LearnRate',le-2, 'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,...
'Observation', 'state', criticOptions);

Similarly, define a recurrent neural network for the actor.

actorNetwork = [
sequencelnputlLayer(numObs, 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(8, 'Name', 'fc')
reluLayer('Name', 'relu')
lstmLayer(8, 'OutputMode', 'sequence', 'Name', 'lstm')
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fullyConnectedLayer(numDiscreteAct, 'Name', 'output')
softmaxLayer('Name', 'actionProb')];

Create a stochastic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation', 'state', actorOptions);

Create a PPO agent using the actor and critic representations.

agentOptions = rlPPOAgentOptions(...
'AdvantageEstimateMethod', 'finite-horizon',
'ClipFactor', 0.1);

agent = rlPPOAgent(actor,critic,agentOptions);

See Also
rlPPOAgentOptions

Topics

“Proximal Policy Optimization Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019b

2-57



2 Objects

2-58

riPPOAgentOptions

Options for proximal policy optimization reinforcement learning agent

Description

Use an rlPPOAgentOptions object to specify options for proximal policy optimization (PPO) agents.
To create a PPO agent, use rlPPOAgent

For more information on PPO agents, see “Proximal Policy Optimization Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlPPOAgentOptions
rlPPOAgentOptions (Name,Value)

Description

opt = rlPPOAgentOptions creates an rlPPOAgentOptions object for use as an argument when
creating a PPO agent using all default settings. You can modify the object properties using dot
notation.

opt = rlPPOAgentOptions(Name,Value) sets option properties on page 2-58 using name-value
pairs. For example, rlPPOAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

ExperienceHorizon — Number of steps the agent interacts with the environment before
learning
512 (default) | positive integer

Number of steps the agent interacts with the environment before learning from its experience,
specified as a positive integer.

The ExperienceHorizon value must be greater than or equal to the MiniBatchSize value.

ClipFactor — Clip factor
0.2 (default) | positive scalar less than 1

Clip factor for limiting the change in each policy update step, specified as a positive scalar less than
1.
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EntropyLossWeight — Entropy loss weight
0.01 (default) | scalar value greater 0@ and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher loss weight value promotes
agent exploration by applying a penalty for being too certain about which action to take. Doing so can
help the agent move out of local optima.

For episode step t, the entropy loss function, which is added to the loss function for actor updates, is:
M
Hy=E 3 #i(St|Op)inm(St|00)

Here:

* E is the entropy loss weight.
* M is the number of possible actions.
* 1(S4|0,) is the probability of taking action A, when in state S; following the current policy.

MiniBatchSize — Mini-batch size
128 (default) | positive integer

Mini-batch size used for each learning epoch, specified as a positive integer.
The MiniBatchSize value must be less than or equal to the ExperienceHorizon value.

NumEpoch — Number of epochs
3 (default) | positive integer

Number of epochs for which the actor and critic networks learn from the current experience set,
specified as a positive integer.

AdvantageEstimateMethod — Method for estimating advantage values
"gae" (default) | "finite-horizon"

Method for estimating advantage values, specified as one of the following:

* "gae" — Generalized advantage estimator
+ "finite-horizon" — Finite horizon estimation

For more information on these methods, see the training algorithm information in “Proximal Policy
Optimization Agents”.

GAEFactor — Smoothing factor for generalized advantage estimator
0.95 (default) | scalar value between 0 and 1

Smoothing factor for generalized advantage estimator, specified as a scalar value between 0 and 1,
inclusive. This option applies only when the AdvantageEstimateMethod option is "gae"

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1
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Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlPPOAgent Proximal policy optimization reinforcement learning agent

Examples

Create PPO Agent Options Object

Create a PPO agent options object, specifying the experience horizon.
opt = rlPPOAgentOptions('ExperienceHorizon',256)

opt =
rlPPOAgentOptions with properties:

ExperienceHorizon: 256
MiniBatchSize: 128
ClipFactor: 0.2000
EntropyLossWeight: 0.0100
NumEpoch: 3
AdvantageEstimateMethod: "gae"
GAEFactor: 0.9500
SampleTime: 1
DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

See Also

Topics
“Proximal Policy Optimization Agents”

Introduced in R2019b
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riQAgent

Q-learning reinforcement learning agent

Description

The Q-learning algorithm is a model-free, online, off-policy reinforcement learning method. A Q-
learning agent is a value-based reinforcement learning agent which trains a critic to estimate the
return or future rewards.

For more information on Q-learning agents, see “Q-Learning Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlQAgent(critic,agentOptions)
Description

agent = rlQAgent(critic,agentOptions) creates a Q-learning agent with the specified critic
network and sets the AgentOptions property.

Input Arguments

critic — Critic network representation
riQvValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties

AgentOptions — Agent options
rlQAgentOptions object

Agent options, specified as an rlQAgentOptions object.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent
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setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create a Q-Learning Agent

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic Q-value function representation using a Q-table derived from the environment
observation and action specifications.

gTable
critic

rlTable(getObservationInfo(env),getActionInfo(env));
rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));

Create a Q-learning agent using the specified critic value function and an epsilon value of 0. 05.

opt = rlQAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;

agent = rlQAgent(critic,opt)

agent =
rlQAgent with properties:

AgentOptions: [1x1 rl.option.rlQAgentOptions]

To check your agent, use getAction to return the action from a random observation.
getAction(agent, {randi(25)})
ans =1

You can now test and train the agent against the environment.

See Also

Functions
rlQAgentOptions

Topics

“Q-Learning Agents”

“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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riQAgentOptions

Options for Q-learning agent

Description

Use an rlQAgentOptions object to specify options for creating Q-learning agents. To create a Q-
learning agent, use rtQAgent

For more information on Q-learning agents, see “Q-Learning Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlQAgentOptions
rlQAgentOptions(Name,Value)

Description

opt = rlQAgentOptions creates an rlQAgentOptions object for use as an argument when
creating a Q-learning agent using all default settings. You can modify the object properties using dot
notation.

opt = rlQAgentOptions(Name,Value)sets option properties on page 2-63 using name-value
pairs. For example, rlQAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

EpsilonGreedyExploration — Options for epsilon greedy exploration
EpsilonGreedyExploration object

Options for epsilon greedy exploration, specified as an EpsilonGreedyExploration object with the
following numeric value properties.

Property Description

Epsilon Probability threshold to either randomly select an
action or select the action that maximizes the
state-action value function. A larger value of
Epsilon means that the agent randomly
explores the action space at a higher rate.

EpsilonMin Minimum value of Epsilon
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Property Description

EpsilonDecay Decay rate

Epsilon is updated using the following formula when it is greater than EpsilonMin:
Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the rtQAgentOptions object. For
example, set the probability threshold to 0. 9.

opt = rlQAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or

equal to 1.

Object Functions
rlQAgent Q-learning reinforcement learning agent

Examples

Create Q-Learning Agent Options Object

This example shows how to create an options object for a Q-Learning agent.
Create an rlQAgentOptions object that specifies the agent sample time.
opt = rlQAgentOptions('SampleTime',0.5)

opt =
rlQAgentOptions with properties:

EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
SampleTime: 0.5000
DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to 0.95.

opt.DiscountFactor = 0.95;

See Also

Topics
“Q-Learning Agents

”
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riQValueRepresentation

Q-Value function critic representation for reinforcement learning agents

Description

This object implements a Q-value function approximator to be used as a critic within a reinforcement
learning agent. A Q-value function is a function that maps an observation-action pair to a scalar value
representing the expected total long-term rewards that the agent is expected to accumulate when it
starts from the given observation and executes the given action. Q-value function critics therefore
need both observations and actions as inputs. After you create an rlQValueRepresentation critic,
use it to create an agent relying on a Q-value function critic, such as an rlQAgent or rLDQNAgent.
For more information on creating representations, see “Create Policy and Value Function
Representations”.

Creation

Syntax

critic = rlQValueRepresentation(net,observationInfo,actionInfo, 'Observation’,
obsName, 'Action',actName)
critic = rlQValueRepresentation(tab,observationInfo,actionInfo)

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
critic = rlQValueRepresentation(net,observationInfo,actionInfo, 'Observation’,
obsName)

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
critic = rlValueRepresentation(  ,options)

Description

Scalar Output Q-Value Critic

critic = rlQValueRepresentation(net,observationInfo,actionInfo, 'Observation’,
obsName, 'Action',actName) creates the Q-value function critic. net is the deep neural
network used as an approximator, and must have both observations and action as inputs, and a single
scalar output. This syntax sets the ObservationInfo and ActionInfo properties of critic respectively
to the inputs observationInfo and actionInfo, containing the observations and action
specifications. obsName must contain the names of the input layers of net that are associated with
the observation specifications. The action name actName must be the name of the input layer of net
that is associated with the action specifications.

critic = rlQValueRepresentation(tab,observationInfo,actionInfo) creates the Q-
value function based critic with discrete action and observation spaces from the Q-value table tab.
tab is a rlTable object containing a table with as many rows as the possible observations and as
many columns as the possible actions. This syntax sets the ObservationIinfo and ActionInfo properties
of critic respectively to the inputs observationInfo and actionInfo, which must be
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rlFiniteSetSpec objects containing the specifications for the discrete observations and action
spaces, respectively.

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
creates a Q-value function based critic using a custom basis function as underlying approximator.
The first input argument is a two-elements cell in which the first element contains the handle
basisFcn to a custom basis function, and the second element contains the initial weight vector WO.
Here the basis function must have both observations and action as inputs and WO must be a column
vector. This syntax sets the ObservationInfo and ActionInfo properties of critic respectively to the
inputs observationInfo and actionInfo.

Multi-Output Discrete Action Space Q-Value Critic

critic = rlQValueRepresentation(net,observationInfo,actionInfo, 'Observation’,
obsName) creates the multi-output Q-value function critic for a discrete action space. net is the
deep neural network used as an approximator, and must have only the observations as input and a
single output layer having as many elements as the number of possible discrete actions. This syntax
sets the ObservationInfo and ActionInfo properties of critic respectively to the inputs
observationInfo and actionInfo, containing the observations and action specifications. Here,
actionInfo must be an rlFiniteSetSpec object containing the specifications for the discrete
action space. The observation names obsName must be the names of the input layers of net.

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
creates the multi-output Q-value function critic for a discrete action space using a custom basis
function as underlying approximator. The first input argument is a two-elements cell in which the first
element contains the handle basisFcn to a custom basis function, and the second element contains
the initial weight matrix WO. Here the basis function must have only the observations as inputs, and
WO must have as many columns as the number of possible actions. This syntax sets the
ObservationInfo and ActionInfo properties of critic respectively to the inputs observationInfo
and actionInfo.

critic = rlValueRepresentation(  ,options) creates the value function based critic
using the additional option set options, which is an rlRepresentationOptions object. This
syntax sets the Options property of critic to the options input argument. You can use this syntax
with any of the previous input-argument combinations.

Input Arguments

net — Deep neural network
array of Layer objects | LayerGraph object | DAGNetwork object | SeriesNetwork object |
dUNetwork object

Deep neural network used as the underlying approximator within the critic, specified as one of the
following:

* Array of Layer objects

* layerGraph object

* DAGNetwork object

* SeriesNetwork object

* dlnetwork object

For single output critics, net must have both observations and actions as inputs, and a scalar output,
representing the expected cumulative long-term reward when the agent starts from the given
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observation and takes the given action. For multi-output discrete action space critics, net must have
only the observations as input and a single output layer having as many elements as the number of
possible discrete actions. Each output element represents the expected cumulative long-term reward
when the agent starts from the given observation and takes the corresponding action. The learnable
parameters of the critic are the weights of the deep neural network.

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

The network output layer must have the same data type and dimension as the signal defined in
ActionInfo. Its name must be the action name specified in actName.

rlQValueRepresentation objects support recurrent deep neural networks for multi-output
discrete action space critics.

For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).
For more information on creating deep neural networks for reinforcement learning, see “Create
Policy and Value Function Representations”.

obsName — Observation names
string | character vector | cell array or character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.

Example: {'my obs'}

actName — Action name
string | character vector | single-element cell array containing a character vector

Action name, specified as a single-element cell array that contains a character vector. It must be the
name of the output layer of net.

Example: {'my act'}

tab — Q-value table
rlTable object

Q-value table, specified as an rlTable object containing an array with as many rows as the possible
observations and as many columns as the possible actions. The element (s,a) is the expected
cumulative long-term reward for taking action a from observed state s. The elements of this array are
the learnable parameters of the critic.

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The output
of the critic is ¢ = W'*B, where W is a weight vector or matrix containing the learnable parameters,
and B is the column vector returned by the custom basis function.

For a single-output Q-value critic, c is a scalar representing the expected cumulative long term
reward when the agent starts from the given observation and takes the given action. In this case,
your basis function must have the following signature.
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B = myBasisFunction(obsl,obs2,...,obsN,act)

For a multiple-output Q-value critic with a discrete action space, c is a vector in which each element
is the expected cumulative long term reward when the agent starts from the given observation and
takes the action corresponding to the position of the considered element. In this case, your basis
function must have the following signature.

B = myBasisFunction(obsl,obs2,...,0bsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo and act has the same data type and dimensions as the
action specifications in actionInfo

Example: @(obs1l,o0bs2,act) [act(2)*obsl(1)"2; abs(obs2(5)+act(1l))]

WO — Initial value of the basis function weights
matrix

Initial value of the basis function weights, W. For a single-output Q-value critic, W is a column vector
having the same length as the vector returned by the basis function. For a multiple-output Q-value
critic with a discrete action space, W is a matrix which must have as many rows as the length of the
basis function output, and as many columns as the number of possible actions.

Properties

Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, a reinforcement learning specification object or an array of specification
objects defining properties such as the dimensions, data type, and names of the observation signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using a specification
command such as rlFiniteSetSpec or rlNumericSpec.

ActionInfo — Action specifications
specification object

Action specifications, a reinforcement learning specification object, defining properties such as the
dimensions, data type and name of the action signals. You can extract actionInfo from an existing
environment or agent using getActionInfo. You can also construct the specification manually using
rlFiniteSetSpec or rlNumericSpec.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.
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Object Functions
rIDDPGAgent  Deep deterministic policy gradient reinforcement learning agent

rITD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent
rIDQNAgent Deep Q-network reinforcement learning agent

rlQAgent Q-learning reinforcement learning agent

rISARSAAgent SARSA reinforcement learning agent

getValue Obtain estimated value function representation

getMaxQValue Obtain maximum state-value function estimate for Q-value function representation
with discrete action space

Examples

Create Q-Value Function Critic from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 11);

Create a deep neural network to approximate the Q-value function. The network must have two
inputs, one for the observation and one for the action. The observation input (here called myobs)
must accept a four-dimensional vector (the observation vector defined by obsInfo). The action input
(here called myact) must accept a two-dimensional vector (the action vector defined by actInfo).
The output of the network must be a scalar, representing the expected cumulative long-term reward
when the agent starts from the given observation and takes the given action.

% observation path layers
obsPath = [imageInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'myobs')
fullyConnectedLayer(1, 'Name', 'obsout')];

% action path layers
actPath = [imageInputLayer([2 1 1], 'Normalization', 'none', 'Name', 'myact')
fullyConnectedLayer(1, 'Name', 'actout')];

% common path to output layers
comPath = [additionLayer(2, 'Name', 'add') fullyConnectedLayer(l, 'Name', 'output')];

% add layers to network object
net addLayers(layerGraph(obsPath),actPath);
net addLayers(net, comPath);

% connect layers
net connectlLayers(net, 'obsout', 'add/inl');
net connectlLayers(net, 'actout', 'add/in2"');
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% plot network
plot(net)
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Create the critic with rlQValueRepresentation, using the network, the observations and action
specification objects, as well as the names of the network input layers.

critic = rlQValueRepresentation(net,obsInfo,actInfo,
'Observation',{'myobs'}, 'Action',{'myact'})

critic =
rlQValueRepresentation with properties:

ActionInfo: [1x1 rl.util.rlNumericSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a random observation and
action, using the current network weights.

v = getValue(critic,{rand(4,1)},{rand(2,1)})
v = single
0.1102

You can now use the critic (along with an with an actor) to create an agent relying on a Q-value
function critic (such as an rlQAgent, rtDQNAgent, rlSARSAAgent, or rlDDPGAgent agent).
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Create Multi-Output Q-Value Function Critic from Deep Neural Network

This example shows how to create a multi-output Q-value function critic for a discrete action space
using a deep neural network approximator.

This critic takes only the observation as input and produces as output a vector with as many elements
as the possible actions. Each element represents the expected cumulative long term reward when the
agent starts from the given observation and takes the action corresponding to the position of the
element in the output vector.

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example, define the
action space as a finite set consisting of 3 possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 3]);

Create a deep neural network approximator to approximate the Q-value function within the critic.
The input of the network (here called myobs) must accept a four-dimensional vector, as defined by
obsInfo. The output must be a single output layer having as many elements as the number of
possible discrete actions (three in this case, as defined by actInfo).

net = [imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'myobs")
fullyConnectedLayer(3, 'Name', 'value')];

Create the critic using the network, the observations specification object, and the name of the
network input layer.

critic = rlQValueRepresentation(net,obsInfo,actInfo, 'Observation',{'myobs'})

critic =
rlQValueRepresentation with properties:

ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the values of a random observation, using
the current network weights. Note that there is one value for each of the three possible actions.

v = getValue(critic,{rand(4,1)})
v = 3x1 single column vector
0.7232
0.8177
-0.2212
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You can now use the critic (along with an actor) to create a discrete action space agent relying on a
Q-value function critic (such as an rlQAgent, rlDQNAgent, or rlSARSAAgent agent).

Create Q-Value Function Critic from Table

Create a finite set observation specification object (or alternatively use getObservationInfo to
extract the specification object from an environment with a discrete observation space). For this
example define the observation space as a finite set with of 4 possible values.

obsInfo = rlFiniteSetSpec([7 5 3 1]);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example define the
action space as a finite set with 2 possible values.

actInfo = rlFiniteSetSpec([4 8]);

Create a table to approximate the value function within the critic. rlTable creates a value table
object from the observation and action specifications objects.

gTable = rlTable(obsInfo,actInfo);

The table stores a value (representing the expected cumulative long term reward) for each possible
observation-action pair. Each row corresponds to an observation and each column corresponds to an
action. You can access the table using the Table property of the vTable object. The initial value of
each element is zero.

gTable.Table

ans = 4x2

[cNoNoNO]
[cNoNoNO]

You can initialize the table to any value, in this case, an array containing the integer from 1 through
8.

gTable.Table=reshape(1:8,4,2)

gTable =
riTable with properties:

Table: [4x2 double]

Create the critic using the table as well as the observations and action specification objects.
critic = rlQValueRepresentation(qTable,obsInfo,actInfo)

critic =
rlQValueRepresentation with properties:
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ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
ObservationInfo: [1x1 rl.util.rlFiniteSetSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation and action,
using the current table entries.

Y, getValue(critic, {5}, {8})
V=26

You can now use the critic (along with an with an actor) to create a discrete action space agent
relying on a Q-value function critic (such as an rlQAgent, rlDQNAgent, or rLSARSAAgent agent).

Create Q-Value Function Critic from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 3
doubles.

obsInfo = rlNumericSpec([3 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 1]1);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations and
actions respectively defined by obsInfo and actInfo.

myBasisFcn = @(myobs,myact) [myobs(2)”2; myobs(1l)+exp(myact(l)); abs(myact(2)); myobs(3)]

myBasisFcn = function_handle with value:
@(myobs,myact) [myobs(2)"2;myobs(1)+exp(myact(1l));abs(myact(2));myobs(3)]

The output of the critic is the scalar W' *myBasisFcn(myobs,myact), where W is a weight column
vector which must have the same size of the custom basis function output. This output is the expected
cumulative long term reward when the agent starts from the given observation and takes the best
possible action. The elements of W are the learnable parameters.

Define an initial parameter vector.
Wo = [1;4;4;2];

Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight vector. The second and third arguments are, respectively, the
observation and action specification objects.

critic = rlQValueRepresentation({myBasisFcn,W0},obsInfo,actInfo)
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critic =
rlQValueRepresentation with properties:

ActionInfo: [1x1 rl.util.rlNumericSpec]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation-action pair,
using the current parameter vector.

\'

getValue(critic,{[1 2 31'},{[4 51'})

VvV =
1x1 dlarray

252.3926

You can now use the critic (along with an with an actor) to create an agent relying on a Q-value
function critic (such as an rlQAgent, rtDQNAgent, rlSARSAAgent, or rlDDPGAgent agent).

Create Multi-Output Q-Value Function Critic from Custom Basis Function

This example shows how to create a multi-output Q-value function critic for a discrete action space
using a custom basis function approximator.

This critic takes only the observation as input and produces as output a vector with as many elements
as the possible actions. Each element represents the expected cumulative long term reward when the
agent starts from the given observation and takes the action corresponding to the position of the
element in the output vector.

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 2
doubles.

obsInfo = rlNumericSpec([2 11);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example, define the
action space as a finite set consisting of 3 possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 31);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations
defined by obsInfo.

myBasisFcn

@(myobs) [myobs(2)"2; myobs(1l); exp(myobs(2)); abs(myobs(1))]

myBasisFcn function handle with value:
@(myobs) [myobs(2)”2;myobs(1);exp(myobs(2));abs(myobs(1))]
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The output of the critic is the vector c = W'*myBasisFcn(myobs), where W is a weight matrix
which must have as many rows as the length of the basis function output, and as many columns as the
number of possible actions.

Each element of c is the expected cumulative long term reward when the agent starts from the given
observation and takes the action corresponding to the position of the considered element. The
elements of W are the learnable parameters.

Define an initial parameter matrix.
W0 = rand(4,3);

Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial parameter matrix. The second and third arguments are, respectively, the
observation and action specification objects.

critic = rlQValueRepresentation({myBasisFcn,W0},obsInfo,actInfo)

critic =
rlQValueRepresentation with properties:

ActionInfo: [1x1 rl.util.rlFiniteSetSpec]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the values of a random observation, using
the current parameter matrix. Note that there is one value for each of the three possible actions.

\'

getValue(critic,{rand(2,1)})

vV =
3x1 dlarray

2.4007
3.7697
1.7370

You can now use the critic (along with an actor) to create a discrete action space agent relying on a
Q-value function critic (such as an rlQAgent, rlDQNAgent, or rlSARSAAgent agent).

Create Q-Value Function Critic from Recurrent Neural Network

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for your critic. To create a recurrent neural network, use a
sequencelInputLayer as the input layer and include at least one lstmLayer.
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Create a recurrent neural network for a multi-output Q-value function representation.

criticNetwork = [
sequencelnputLayer(numObs, 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer (50, 'Name', 'CriticStateFCl')
reluLayer('Name', 'CriticRelul")
lstmLayer (20, 'OutputMode', 'sequence', 'Name', 'CriticLSTM");
fullyConnectedLayer (20, 'Name', 'CriticStateFC2"')
reluLayer('Name', 'CriticRelu2"')
fullyConnectedLayer(numDiscreteAct, 'Name', 'output')];

Create a representation for your critic using the recurrent neural network.
criticOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation', 'state',criticOptions);

See Also

Functions
getActionInfo | getObservationInfo | rlRepresentationOptions

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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Options set for reinforcement learning agent representations (critics and actors)

Description
Use an rlRepresentationOptions object to specify an options set for critics

(rlValueRepresentation, rlQValueRepresentation) and actors
(riDeterministicActorRepresentation, rlStochasticActorRepresentation).

Creation

Syntax

rlRepresentationOptions
rlRepresentationOptions(Name,Value)

repOpts
repOpts

Description

repOpts = rlRepresentationOptions creates a default option set to use as a last argument
when creating a reinforcement learning actor or critic. You can modify the object properties using dot
notation.

repOpts = rlRepresentationOptions(Name,Value) creates an options set with the specified
“Properties” on page 2-78 using one or more name-value pair arguments.

Properties

LearnRate — Learning rate for the representation
0.01 (default) | positive scalar

Learning rate for the representation, specified as the comma-separated pair consisting of
'LearnRate' and a positive scalar. If the learning rate is too low, then training takes a long time. If
the learning rate is too high, then training might reach a suboptimal result or diverge.

Example: 'LearnRate',0.025

Optimizer — Optimizer for representation
"adam" (default) | "sgdm" | "rmsprop"

Optimizer for training the network of the representation, specified as the comma-separated pair
consisting of 'Optimizer' and one of the following strings:

* "adam" — Use the Adam optimizer. You can specify the decay rates of the gradient and squared
gradient moving averages using the GradientDecayFactor and
SquaredGradientDecayFactor fields of the OptimizerParameters option.

* "sgdm" — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify
the momentum value using the Momentum field of the OptimizerParameters option.
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* "rmsprop" — Use the RMSProp optimizer. You can specify the decay rate of the squared gradient
moving average using the SquaredGradientDecayFactor fields of the OptimizerParameters
option.

For more information about these optimizers, see “Stochastic Gradient Descent” (Deep Learning
Toolbox) in the Algorithms section of trainingOptions in Deep Learning Toolbox.

Example: 'Optimizer', "sgdm"

OptimizerParameters — Applicable parameters for optimizer
OptimizerParameters object

Applicable parameters for the optimizer, specified as the comma-separated pair consisting of
'OptimizerParameters' and an OptimizerParameters object.

The OptimizerParameters object has the following properties.

Momentum Contribution of previous step, specified as a
scalar from 0 to 1. A value of 0 means no
contribution from the previous step. A value of 1
means maximal contribution.

This parameter applies only when Optimizer is
"sgdm". In that case, the default value is 0.9.
This default value works well for most problems.

Epsilon Denominator offset, specified as a positive scalar.
The optimizer adds this offset to the denominator
in the network parameter updates to avoid
division by zero.

This parameter applies only when Optimizer is
"adam" or rmsprop. In that case, the default
value is 10-8. This default value works well for
most problems.

GradientDecayFactor Decay rate of gradient moving average, specified
as a positive scalar from 0 to 1.

This parameter applies only when Optimizer is
"adam". In that case, the default value is 0.9.
This default value works well for most problems.

SquaredGradientDecayFactor Decay rate of squared gradient moving average,
specified as a positive scalar from 0 to 1.

This parameter applies only when Optimizer is
"adam" or "rmsprop". In that case, the default
value is 0.999. This default value works well for
most problems.

When a particular property of OptimizerParameters is not applicable to the optimizer type
specified in the Optimizer option, that property is set to "Not applicable".
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To change the default values, create an rlRepresentationOptions set and use dot notation to
access and change the properties of OptimizerParameters.

repOpts = rlRepresentationOptions;
repOpts.OptimizerParameters.Epsilon = le-7;

GradientThreshold — Threshold value for gradient
Inf (default) | positive scalar

Threshold value for the representation gradient, specified as the comma-separated pair consisting of
'GradientThreshold' and Inf or a positive scalar. If the gradient exceeds this value, the gradient
is clipped as specified by the GradientThresholdOption. Clipping the gradient limits how much
the network parameters change in a training iteration.

Example: 'GradientThreshold',1

GradientThresholdMethod — Gradient threshold method
"12norm" (default) | "global-12norm" | "absolute-value"

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as the comma-separated pair consisting of 'GradientThresholdMethod' and one of the following
strings:

* "12norm" — If the L, norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L, norm equals GradientThreshold.

* "global-12norm" — If the global L, norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L, norm considers all learnable
parameters.

+ "absolute-value" — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see “Gradient Clipping” (Deep Learning Toolbox) in the Algorithms section of
trainingOptions in Deep Learning Toolbox.
Example: 'GradientThresholdMethod', "absolute-value"

L2RegularizationFactor — Factor for L, regularization
0.0001 (default) | nonnegative scalar

Factor for L, regularization (weight decay), specified as the comma-separated pair consisting of
"L2RegularizationFactor' and a nonnegative scalar. For more information, see “L2
Regularization” (Deep Learning Toolbox) in the Algorithms section of trainingOptions in Deep
Learning Toolbox.

To avoid overfitting when using a representation with many parameters, consider increasing the
L2RegularizationFactor option.
Example: 'L2RegularizationFactor',0.0005

UseDevice — Computation device for training
"cpu" (default) | "gpu"

Computation device for training an agent that uses the representation, specified as the comma-
separated pair consisting of 'UseDevice' and either "cpu" or "gpu".
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The "gpu" option requires Parallel Computing Toolbox™. To use a GPU for training a network, you
must also have a CUDA® enabled NVIDIA® GPU with compute capability 3.0 or higher.

Example: 'UseDevice’, "gpu”

Object Functions

rlValueRepresentation Value function critic representation for reinforcement learning
agents
rlQValueRepresentation Q-Value function critic representation for reinforcement

learning agents

rIDeterministicActorRepresentation Deterministic actor representation for reinforcement learning
agents

rIStochasticActorRepresentation Stochastic actor representation for reinforcement learning
agents

Examples

Configure Options for Creating Representation

Create an options set for creating a critic or actor representation for a reinforcement learning agent.
Set the learning rate for the representation to 0.05, and set the gradient threshold to 1. You can set
the options using Name,Value pairs when you create the options set. Any options that you do not
explicitly set have their default values.

repOpts = rlRepresentationOptions('LearnRate',5e-2,...
'GradientThreshold', 1)

repOpts =
rlRepresentationOptions with properties:

LearnRate: 0.0500
GradientThreshold: 1
GradientThresholdMethod: "12norm"
L2RegularizationFactor: 1.0000e-04
UseDevice: "cpu"
Optimizer: "adam"
OptimizerParameters: [1x1 rl.option.OptimizerParameters]

Alternatively, create a default options set and use dot notation to change some of the values.

repOpts = rlRepresentationOptions;
repOpts.LearnRate = 5e-2;
repOpts.GradientThreshold = 1

repOpts =
rlRepresentationOptions with properties:

LearnRate: 0.0500
GradientThreshold: 1
GradientThresholdMethod: "12norm"
L2RegularizationFactor: 1.0000e-04
UseDevice: "cpu"
Optimizer: "adam"
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OptimizerParameters: [1x1 rl.option.OptimizerParameters]

If you want to change the properties of the OptimizerParameters option, use dot notation to
access them.

repOpts.OptimizerParameters.Epsilon = le-7;
repOpts.OptimizerParameters

ans =

OptimizerParameters with properties:

Momentum: "Not applicable”
Epsilon: 1.0000e-07
GradientDecayFactor: 0.9000
SquaredGradientDecayFactor: 0.9990

See Also

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2019a
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SARSA reinforcement learning agent

Description

The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A SARSA
agent is a value-based reinforcement learning agent which trains a critic to estimate the return or
future rewards.

For more information on SARSA agents, see “SARSA Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlSARSAAgent(critic,agentOptions)
Description

agent = rlSARSAAgent(critic,agentOptions) creates a SARSA agent with the specified critic
network and sets the AgentOptions property.

Input Arguments

critic — Critic network representation
rlQValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties

AgentOptions — Agent options
rlSARSAAgentOptions object

Agent options, specified as an rlSARSAAgentOptions object.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent
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setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create a SARSA Agent

Create or load an environment interface. For this example load the Basic Grid World environment
interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic value function representation using a Q table derived from the environment
observation and action specifications.

gTable
critic

rlTable(getObservationInfo(env),getActionInfo(env));
rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));

Create a SARSA agent using the specified critic value function and an epsilon value of 0. 05.

opt = rlSARSAAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;

agent = rlSARSAAgent(critic,opt)

agent =
rlSARSAAgent with properties:

AgentOptions: [1x1 rl.option.rlSARSAAgentOptions]

To check your agent, use getAction to return the action from a random observation.
getAction(agent, {randi(25)})
ans =1

You can now test and train the agent against the environment.

See Also
rlSARSAAgentOptions

Topics

“SARSA Agents”

“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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Options for SARSA agent

Description

Use an r'lSARSAAgentOptions object to specify options for creating SARSA agents. To create a
SARSA agent, use rlSARSAAgent

For more information on SARSA agents, see “SARSA Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax

opt
opt

rlSARSAAgentOptions
rlSARSAAgentOptions (Name, Value)

Description

opt = rlSARSAAgentOptions creates an rlSARSAAgentOptions object for use as an argument
when creating a SARSA agent using all default settings. You can modify the object properties using
dot notation.

opt = rlSARSAAgentOptions(Name,Value) sets option properties on page 2-85 using name-
value pairs. For example, rlSARSAAgentOptions('DiscountFactor',0.95) creates an option
set with a discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property
name in quotes.

Properties

EpsilonGreedyExploration — Options for epsilon greedy exploration
EpsilonGreedyExploration object

Options for epsilon greedy exploration, specified as an EpsilonGreedyExploration object with the
following numeric value properties.

Property Description

Epsilon Probability threshold to either randomly select an
action or select the action that maximizes the
state-action value function. A larger value of
Epsilon means that the agent randomly
explores the action space at a higher rate.

EpsilonMin Minimum value of Epsilon
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Property Description

EpsilonDecay Decay rate

Epsilon is updated using the following formula when it is greater than EpsilonMin:
Epsilon = Epsilon*(1-EpsilonDecay)

To specify exploration options, use dot notation after creating the rtSARSAAgentOptions object.
For example, set the probability threshold to 0.9.

opt = rlSARSAAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.9;

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or

equal to 1.

Object Functions
rISARSAAgent SARSA reinforcement learning agent

Examples

Create a SARSA Agent Options Object

This example shows how to create a SARSA agent option object.

Create an rlSARSAAgentOptions object that specifies the agent sample time.
opt = rlSARSAAgentOptions('SampleTime',0.5)

opt =
rlSARSAAgentOptions with properties:

EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
SampleTime: 0.5000
DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to 0.95.

opt.DiscountFactor = 0.95;

See Also

Topics
“SARSA Agents”
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Introduced in R2019a
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Options for simulating a reinforcement learning agent within an environment

Description

Use an rlSimulationOptions object to specify simulation options for simulating a reinforcement
learning agent within an environment. To perform the simulation, use sim.

”

For more information on agents training and simulation, see “Train Reinforcement Learning Agents”.

Creation

Syntax

simOpts = rlSimulationOptions
opt = rlSimulationOptions(Name,Value)

Description

simOpts = rlSimulationOptions returns the default options for simulating a reinforcement
learning environment against an agent. Use simulation options to specify parameters about the
simulation such as the maximum number of steps to run per simulation and the number of
simulations to run. After configuring the options, use simOpts as an input argument for sim.

opt = rlSimulationOptions(Name,Value) creates a simulation options set with the specified
“Properties” on page 2-88 using one or more name-value pair arguments.

Properties

MaxSteps — Number of steps to run the simulation
500 (default) | positive integer

Number of steps to run the simulation, specified as the comma-separated pair consisting of
'MaxSteps' and a positive integer. In general, you define episode termination conditions in the
environment. This value is the maximum number of steps to run in the simulation if those termination
conditions are not met.

Example: 'MaxSteps', 1000

NumSimulations — Number of simulations
1 (default) | positive integer

Number of simulations to run, specified as the comma-separated pair consisting of
"NumSimulations' and a positive integer. At the start of each simulation, sim resets the
environment. You specify what happens on environment reset when you create the environment. For
instance, resetting the environment at the start of each episode can include randomizing initial state
values, if you configure your environment to do so. In that case, running multiple simulations allows
you to validate performance of a trained agent over a range of initial conditions.
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Example: 'NumSimulations', 10

StopOnError — Stop simulation when error occurs
"on" (default) | "off"

Stop simulation when an error occurs, specified as "off" or "on". When this option is "off", errors
are captured and returned in the SimulationInfo output of sim, and simulation continues.

UseParallel — Flag for using parallel simulation
false (default) | true

Flag for using parallel simulation, specified as the comma-separated pair consisting of
'"UseParallel' and either true or false. Setting this option to true configures simulation to use
parallel computing. To specify options for parallel simulation, use the ParallelizationOptions
property.

Using parallel computing requires Parallel Computing Toolbox software.

For more information about training using parallel computing, see “Train Reinforcement Learning
Agents”.
Example: 'UseParallel’, true

ParallelizationOptions — Options to control parallel simulation
ParallelTraining object

Parallelization options to control parallel simulation, specified as the comma-separated pair
consisting of 'ParallelizationOptions' and a ParallelTraining object. For more information
about training using parallel computing, see “Train Reinforcement Learning Agents”.

The ParallelTraining object has the following properties, which you can modify using dot
notation after creating the rlTrainingOptions object.

WorkerRandomSeeds — Randomizer initialization for workers
—1 (default) | =2 | vector

Randomizer initialization for workers, specified as one the following:

* —1 — Assign a unique random seed to each worker. The value of the seed is the worker ID.
¢ —2 — Do not assign a random seed to the workers.

* Vector — Manually specify the random seed for each work. The number of elements in the vector
must match the number of workers.

TransferBaseWorkspaceVariables — Send model and workspace variables to parallel
workers
"on" (default) | "off"

Send model and workspace variables to parallel workers, specified as "on" or "off". When the
option is "on", the host sends variables used in models and defined in the base MATLAB workspace
to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[ ] (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.
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SetupFcn — Function to run before simulation starts
[ 1 (default) | function handle

Function to run before simulation starts, specified as a handle to a function having no input
arguments. This function is run once per worker before simulation begins. Write this function to
perform any processing that you need prior to simulation.

CleanupFcn — Function to run after simulation ends
[ 1 (default) | function handle

Function to run after simulation ends, specified as a handle to a function having no input arguments.
You can write this function to clean up the workspace or perform other processing after simulation
terminates.

Object Functions
sim Simulate a trained reinforcement learning agent within a specified environment

Examples

Configure Options for Simulation

Create an options set for simulating a reinforcement learning environment. Set the number of steps
to simulate to 1000, and configure the options to run three simulations.

You can set the options using Name,Value pairs when you create the options set. Any options that you
do not explicitly set have their default values.

simOpts = rlSimulationOptions(...
'MaxSteps',1000, ...
"NumSimulations', 3)

simOpts =
rlSimulationOptions with properties:

MaxSteps: 1000
NumSimulations: 3
StopOnError: "
UseParallel: 0
ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

on

Alternatively, create a default options set and use dot notation to change some of the values.
simOpts = rlSimulationOptions;

simOpts.MaxSteps = 1000;

simOpts.NumSimulations = 3;

simOpts

simOpts =
rlSimulationOptions with properties:

MaxSteps: 1000
NumSimulations: 3
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StopOnError: "on

UseParallel: 0
ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

See Also

Topics
“Reinforcement Learning Agents”

Introduced in R2019a
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riIStochasticActorRepresentation

Stochastic actor representation for reinforcement learning agents

Description

This object implements a function approximator to be used as a stochastic actor within a
reinforcement learning agent. A stochastic actor takes the observations as inputs and returns a
random action, thereby implementing a stochastic policy with a specific probability distribution. After
you create an rlStochasticActorRepresentation object, use it to create a suitable agent, such
as an rlACAgent or rlPGAgent agent. For more information on creating representations, see
“Create Policy and Value Function Representations”.

Creation

Syntax

discActor = rlStochasticActorRepresentation(net,observationInfo,
discActionInfo, 'Observation', obsName)

discActor = rlStochasticActorRepresentation({basisFcn,W0},observationInfo,
actionInfo)

discActor rlStochasticActorRepresentation( ,options)

contActor = rlStochasticActorRepresentation(net,observationInfo,
contActionInfo, 'Observation',obsName)
contActor = rlStochasticActorRepresentation(  ,options)

Description

Discrete Action Space Stochastic Actor

discActor = rlStochasticActorRepresentation(net,observationInfo,
discActionInfo, 'Observation’',obsName) creates a stochastic actor with a discrete action
space, using the deep neural network net as function approximator. Here, the output layer of net
must have as many elements as the number of possible discrete actions. This syntax sets the
ObservationInfo and ActionInfo properties of discActor to the inputs observationInfo and
discActionInfo respectively. obsName must contain the names of the input layers of net.

discActor = rlStochasticActorRepresentation({basisFcn,W0},observationInfo,
actionInfo) creates a discrete space stochastic actor using a custom basis function as underlying
approximator. The first input argument is a two-elements cell in which the first element contains the
handle basisFcn to a custom basis function, and the second element contains the initial weight
matrix WO. This syntax sets the ObservationInfo and ActionInfo properties of actor respectively to
the inputs observationInfo and actionInfo.

discActor = rlStochasticActorRepresentation( ,options) creates the discrete action

space, stochastic actor discActor using the additional options set options, which is an
rlRepresentationOptions object. This syntax sets the Options property of discActor to the
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options input argument. You can use this syntax with any of the previous input-argument
combinations.

Continuous Action Space Gaussian Actor

contActor = rlStochasticActorRepresentation(net,observationInfo,
contActionInfo, 'Observation',obsName) creates a Gaussian stochastic actor with a
continuous action space using the deep neural network net as function approximator. Here, the
output layer of net must have twice as many elements as the number of dimensions of the continuous
action space. This syntax sets the ObservationInfo and ActionInfo properties of contActor to the
inputs observationInfo and contActionInfo respectively. obsName must contain the names of
the input layers of net.

Note contActor does not enforce constraints set by the action specification, therefore, when using
this actor, you must enforce action space constraints within the environment.

contActor = rlStochasticActorRepresentation( _ ,options) creates the continuous
action space, Gaussian actor contActor using the additional options option set, which is an
rlRepresentationOptions object. This syntax sets the Options property of contActor to the
options input argument. You can use this syntax with any of the previous input-argument
combinations.

Input Arguments

net — Deep neural network
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the actor, specified as one of the
following:

* Array of Layer objects
* layerGraph object

* DAGNetwork object

* SeriesNetwork object
* dlnetwork object

For a discrete action space stochastic actor, net must have the observations as input and a single
output layer having as many elements as the number of possible discrete actions. Each element
represents the probability (which must be non-negative) of executing the corresponding action.

For a continuous action space stochastic actor, net must have the observations as input and a single
output layer having twice as many elements as the number of dimensions of the continuous action
space. The elements of the output vector represent all the mean values followed by all the variances
(which must be non-negative) of the Gaussian distributions for the dimensions of the action space.

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names specified in obsName. The network output layer must have the same data type and
dimension as the signal defined in ActionInfo.

rlStochasticActorRepresentation objects support recurrent deep neural networks.
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For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).
For more information on creating deep neural networks for reinforcement learning, see “Create
Policy and Value Function Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.
Example: {'my obs'}

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The output
of the actor is the vector a = softmax(W'*B), where W is a weight matrix and B is the column
vector returned by the custom basis function. Each element of a represents the probability of taking
the corresponding action. The learnable parameters of the actor are the elements of W.

When creating a stochastic actor representation, your basis function must have the following
signature.

B = myBasisFunction(obsl,obs2,...,0bsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo
Example: @(obs1l,0bs2,0bs3) [obs3(2)*obsl(1)"2; abs(obs2(5)+obs3(1))]

WO — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a matrix. It must have as many rows as the
length of the basis function output, and as many columns as the number of possible actions.

Properties

Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, a reinforcement learning specification object or an array of specification
objects defining properties such as dimensions, data type, and names of the observation signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rINumericSpec.
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ActionInfo — Action specifications
specification object

Action specifications, a reinforcement learning specification object defining properties such as
dimensions, data type and name of the action signals.

For a discrete action space actor, rlStochasticActorRepresentation sets ActionlInfo to the
input discActionInfo, which must be an rlFiniteSetSpec object.

For a continuous action space actor, rlStochasticActorRepresentation sets Actionlnfo to the
input contActionInfo, which must be an rltNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

Object Functions

rlACAgent  Actor-critic reinforcement learning agent

rlPGAgent  Policy gradient reinforcement learning agent

rlPPOAgent Proximal policy optimization reinforcement learning agent

getAction Obtain action from agent or actor representation given environment observations

Examples

Create Discrete Stochastic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing four
doubles.

obsInfo = rlNumericSpec([4 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as consisting of
three values, -10, 0, and 10.

actInfo = rlFiniteSetSpec([-10 0 10]);

Create a deep neural network approximator for the actor. The input of the network (here called
state) must accept a four-dimensional vector (the observation vector just defined by obsInfo), and
its output (here called actionProb) must be a three-dimensional vector. Each element of the output
vector must be between 0 and 1 since it represents the probability of executing each of the three
possible actions (as defined by actInfo). Using softmax as the output layer enforces this
requirement.

net = [ imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'state')

fullyConnectedLayer(3, 'Name', 'fc')
softmaxLayer('Name', 'actionProb') 1;
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Create the actor with rlStochasticActorRepresentation, using the network, the observations
and action specification objects, as well as the names of the network input layer.

actor = rlStochasticActorRepresentation(net, obsInfo, actInfo, 'Observation', 'state')

actor =
rlStochasticActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To validate your actor, use getAction to return a random action from the observation vector [1 1 1
1], using the current network weights.

act = getAction(actor,{[1 1 1 1]});
act{1}

ans = 10

You can now use the actor to create a suitable agent, such as an rlACAgent, or rlPGAgent agent.

Create Continuous Stochastic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 6
doubles.

obsInfo = rlNumericSpec([6 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles both between
-10 and 10.

actInfo = rlNumericSpec([2 1], 'LowerLimit',-10, 'UpperLimit',10);

Create a deep neural network approximator for the actor. The observation input (here called myobs)
must accept a six-dimensional vector (the observation vector just defined by obsInfo). The output
(here called myact) must be a four-dimensional vector (twice the number of dimensions defined by
actInfo). The elements of the output vector represent, in sequence, all the means and all the
variances of every action. The network has one path for the mean value (which is scaled to the output
range) and another path for the variance (where a softplus layer enforces non-negativity).

[)

% observation path layers (6 by 1 input and a 2 by 1 output)
inPath = [ imagelInputLayer([6 1 1], 'Normalization', 'none', 'Name', 'myobs"')
fullyConnectedLayer(2, 'Name', 'infc') 1;

% path layers for mean value (2 by 1 input and 2 by 1 output)
% using scalingLayer to scale the range
meanPath = [ tanhLayer('Name', 'tanh');
scalinglLayer('Name', 'scale', 'Scale',actInfo.UpperLimit) ];
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% path layers for variance (2 by 1 input and output)
% using softplus layer to make it non negative)
variancePath = softplusLayer('Name', 'splus');

% conctatenate two inputs (along dimension #3) to form a single (4 by 1) output layer
outLayer = concatenationLayer(3,2, 'Name', 'gaussPars');

% add layers to network object

net = layerGraph(inPath);

net = addLayers(net,meanPath);

net = addLayers(net,variancePath);
net = addLayers(net,outLayer);

% connect layers

net = connectlLayers(net, 'infc', 'tanh/in"); % connect output of inPath to meanPath i
net = connectlLayers(net, 'infc', 'splus/in'); % connect output of inPath to variancePa
net = connectlLayers(net, 'scale', 'gaussPars/inl"); % connect output of meanPath to gaussPar:
net = connectlLayers(net, 'splus', 'gaussPars/in2"); % connect output of variancePath to gaus:

% plot network (the output obtained by concatenation is a 2+2
plot(net)
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Create the actor with rlStochasticActorRepresentation, using the network, the observations
and action specification objects, as well as the names of the network input layer.

actor = rlStochasticActorRepresentation(net, obsInfo, actInfo, 'Observation', 'myobs")
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actor =
rlStochasticActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlNumericSpec]

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use getAction to return a random action from the observation vector
ones(6,1), using the current network weights.

act = getAction(actor,{ones(6,1)});
act{1}

ans = 2x1 single column vector

-0.0763
9.6860

You can now use the actor to create a suitable agent (such as an rltACAgent, or rlPGAgent agent)

Create Stochastic Actor from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 2
doubles.

obsInfo = rlNumericSpec([2 1]);

The stochastic actor based on a custom basis function does not support continuous action spaces.
Therefore, create a discrete action space specification object (or alternatively use getActionInfo to
extract the specification object from an environment with a discrete action space). For this example,
define the action space as a finite set consisting of 3 possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 31);
Create a custom basis function. Each element is a function of the observations defined by obsInfo.

myBasisFcn = @(myobs) [myobs(2)”2; myobs(1l); exp(myobs(2)); abs(myobs(1l))]

myBasisFcn = function_handle with value:
@(myobs) [myobs(2)"2;myobs(1);exp(myobs(2));abs(myobs(1))]

The output of the actor is the action, among the ones defined in actInfo, corresponding to the
element of softmax (W' *myBasisFcn(myobs) ) which has the highest value. W is a weight matrix,
containing the learnable parameters, which must have as many rows as the length of the basis
function output, and as many columns as the number of possible actions.

Define an initial parameter matrix.

W0 = rand(4,3);
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Create the actor. The first argument is a two-element cell containing both the handle to the custom
function and the initial parameter matrix. The second and third arguments are, respectively, the
observation and action specification objects.

actor = rlStochasticActorRepresentation({myBasisFcn,W0},obsInfo,actInfo)

actor =
rlStochasticActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor use the getAction function to return one of the three possible actions,
depending on a given random observation and on the current parameter matrix.

\; getAction(actor,{rand(2,1)})

% Ix1 cell array

{[71}

You can now use the actor (along with an critic) to create a suitable discrete action space agent.

Create Stochastic Actor from Recurrent Neural Network

For this example, you create a stochastic actor with a discrete action space using a recurrent neural
network. You can also use a recurrent neural network for a continuous stochastic actor using the
same method.

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for the actor. To create a recurrent neural network, use a
sequencelInputlLayer as the input layer and include at least one LstmLayer.

actorNetwork = [
sequencelnputLayer(numObs, '‘Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(8, 'Name', 'fc')
reluLayer('Name', 'relu')
lstmLayer(8, 'OutputMode', 'sequence', 'Name', 'lstm")
fullyConnectedLayer(numDiscreteAct, 'Name', 'output"')
softmaxLayer('Name', 'actionProb')];

Create a stochastic actor representation for the network.
actorOptions = rlRepresentationOptions('LearnRate',le-3, 'GradientThreshold',1);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation', 'state', actorOptions);
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See Also

Functions
getActionInfo | getObservationInfo | rlRepresentationOptions

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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riTable

Value table or Q table

Description

Value tables and Q tables are one way to represent critic networks for reinforcement learning. Value
tables store rewards for a finite set of observations. Q tables store rewards for corresponding finite
observation-action pairs.

To create a value function representation using an rlTable object, use an
rlValueRepresentation or rlQValueRepresentation object.

Creation

Syntax

T
T

rlTable(obsinfo)
riTable(obsinfo,actinfo)

Description

T rlTable(obsinfo) creates a value table for the given discrete observations.

T = rlTable(obsinfo,actinfo) creates a Q table for the given discrete observations and
actions.

Input Arguments

obsinfo — Observation specification
rlFiniteSetSpec object

Observation specification, specified as an rlFiniteSetSpec object.

actinfo — Action specification
rlFiniteSetSpec object

Action specification, specified as an rlFiniteSetSpec object.

Properties

Table — Reward table
array

Reward table, returned as an array. When Table is a:

* Value table, it contains N, rows, where N, is the number of finite observation values.
* Q table, it contains N, rows and N, columns, where N, is the number of possible finite actions.
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Object Functions
rlValueRepresentation ~ Value function critic representation for reinforcement learning agents
rlQValueRepresentation Q-Value function critic representation for reinforcement learning agents

Examples

Create a Value Table

This example shows how to use rlTable to create a value table. You can use such a table to
represent the critic of an actor-critic agent with a finite observation space.

Create an environment interface, and obtain its observation specifications.

env = rlPredefinedEnv("BasicGridWorld");
obsInfo = getObservationInfo(env)

obsInfo =
rlFiniteSetSpec with properties:

Elements: [25x1 double]
Name: "MDP Observations"
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

Create the value table using the observation specification.
vTable = rlTable(obsInfo)

vTable =
rlTable with properties:

Table: [25x1 double]

Create a Q Table

This example shows how to use rlTable to create a Q table. Such a table could be used to represent
the actor or critic of an agent with finite observation and action spaces.

Create an environment interface, and obtain its observation and action specifications.

env=rMDPEnv(createMDP (8, ["up";"down"]));
obsInfo = getObservationInfo(env)

obsInfo =
rlFiniteSetSpec with properties:

Elements: [8x1 double]
Name: "MDP Observations"
Description: [0x0 string]
Dimension: [1 1]
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DataType: "double"

actInfo = getActionInfo(env)

actInfo =
rlFiniteSetSpec with properties:

Elements: [2x1 double]
Name: "MDP Actions"
Description: [0x0 string]
Dimension: [1 1]
DataType: "double"

Create the Q table using the observation and action specifications.

gTable

rlTable(obsInfo,actInfo)

qTable =
rlTable with properties:

Table: [8x2 double]

See Also

Topics
“Create Policy and Value Function Representations”

Introduced in R2019a
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riTD3Agent

Twin-delayed deep deterministic policy gradient reinforcement learning agent

Description

The twin-delayed deep deterministic policy gradient (DDPG) algorithm is an actor-critic, model-free,
online, off-policy reinforcement learning method which computes an optimal policy that maximizes
the long-term reward.

Use rlTD3Agent to create one of the following types of agents.

* Twin-delayed deep deterministic policy gradient (TD3) agent with two Q-value functions. This
agent prevents overestimation of the value function by learning two Q value functions and using
the minimum values for policy updates.

* Delayed deep deterministic policy gradient (delayed DDPG) agent with a single Q value function.
This agent is a DDPG agent with target policy smoothing and delayed policy and target updates.

For more information, see “Twin-Delayed Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlTD3Agent(actor,critics,agentOptions)
Description

agent = rlTD3Agent(actor,critics,agentOptions) creates an agent with the specified actor
and critic representations and sets the AgentOptions property. To create a:

» TD3 agent, specify a two-element row vector of critic representations.
* Delayed DDPG agent, specify a single critic representation.

Input Arguments

actor — Actor network representation
rlDeterministicActorRepresentation object

Actor network representation, specified as an rlDeterministicActorRepresentation ohject.
For more information on creating actor representations, see “Create Policy and Value Function
Representations”.

critics — Critic network representations
rlQValueRepresentation object | two-element row vector of rlQValueRepresentation objects
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Critic network representations, specified as one of the following:

* rlQValueRepresentation object — Create a delayed DDPG agent with a single Q value
function. This agent is a DDPG agent with target policy smoothing and delayed policy and target
updates.

* Two-element row vector of rlQValueRepresentation objects — Create a TD3 agent with two
critic value functions. The two critic networks must be unique rlQValueRepresentation
objects with the same observation and action specifications. The representations can either have
the different structures or the same structure but with different initial parameters.

For more information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties

AgentOptions — Agent options
rlTD3AgentOptions object

Agent options, specified as an rlTD3AgentOptions object.

ExperienceBuffer — Experience buffer
ExperienceBuffer object

Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

* S is the current observation of the environment.

* A s the action taken by the agent.

* Ris the reward for taking action A.

* S'is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Twin-Delayed Deep Deterministic Policy Gradient Agents”.

Object Functions

train Train a reinforcement learning agent within a specified environment

sim Simulate a trained reinforcement learning agent within a specified
environment

getActor Get actor representation from reinforcement learning agent

setActor Set actor representation of reinforcement learning agent

getCritic Get critic representation from reinforcement learning agent

setCritic Set critic representation of reinforcement learning agent

generatePolicyFunction Create function that evaluates trained policy of reinforcement learning
agent

Examples

Create TD3 Agent

Create environment and obtain observation and action specifications.
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env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);

numObs = obsInfo.Dimension(1);

actInfo = getActionInfo(env);

numAct = numel(actInfo);

Create two Q-value critic representations. First, create a critic deep neural network structure.

statePathl = [
imageInputLayer([numObs 1 1], 'Normalization', 'none', 'Name', 'observation')
fullyConnectedLayer (400, 'Name', 'CriticStateFCl")
reluLayer('Name', 'CriticStateRelul')
fullyConnectedLayer (300, 'Name', 'CriticStateFC2")
I;

actionPathl = [
imageInputLayer([numAct 1 1], 'Normalization', 'none','Name', 'action')
fullyConnectedLayer (300, 'Name', 'CriticActionFC1l"')
I;

commonPathl = [
additionLayer(2, 'Name', 'add")
reluLayer('Name', 'CriticCommonRelul"')
fullyConnectedLayer(1l, 'Name', 'CriticOutput')
I;

criticNet = layerGraph(statePathl);

criticNet = addLayers(criticNet,actionPathl);

criticNet = addLayers(criticNet, commonPathl);

criticNet = connectlLayers(criticNet, 'CriticStateFC2', 'add/inl');
criticNet = connectlLayers(criticNet, 'CriticActionFCl', 'add/in2");

Critic the critic representations. Use the same network structure ofr both critics. The TD3 agent
initializes the two networks using different default parameters.

criticOptions = rlRepresentationOptions('Optimizer', 'adam', 'LearnRate',le-3,...
'GradientThreshold',1, 'L2RegularizationFactor',2e-4);
criticl = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
'Observation',{'observation'}, 'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
'Observation',{'observation'}, 'Action',{'action'},criticOptions);

Create an actor deep neural network.

actorNet = [
imagelInputLayer([numObs 1 1], 'Normalization', 'none', 'Name', 'observation')
fullyConnectedLayer (400, 'Name', 'ActorFC1l')
reluLayer('Name', "ActorRelul")
fullyConnectedLayer (300, 'Name', 'ActorFC2"')
reluLayer('Name', 'ActorRelu2")
fullyConnectedLayer(numAct, 'Name', "ActorFC3")
tanhLayer('Name', 'ActorTanhl")
1;

Create a deterministic actor representation.
actorOptions = rlRepresentationOptions('Optimizer','adam', 'LearnRate’,le-3,...
'GradientThreshold', 1, 'L2RegularizationFactor',le-5);

actor = rlDeterministicActorRepresentation(actorNet,obsInfo,actInfo,...
'Observation',{'observation'}, "Action',{'ActorTanhl'},actorOptions);
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Specify agent options.

agentOptions = rlTD3AgentOptions;
agentOptions.DiscountFactor = 0.99;
agentOptions.TargetSmoothFactor = 5e-3;

agentOptions.TargetPolicySmoothModel.Variance = 0.2;
agentOptions.TargetPolicySmoothModel.LowerLimit = -0.5;
agentOptions.TargetPolicySmoothModel.UpperLimit = 0.5;

Create TD3 agent using actor, critics, and options.
agent = rlTD3Agent(actor,[criticl critic2],agentOptions);

You can also create an rlTD3Agent object with a single critic. In this case, the object represents a
DDPG agent with target policy smoothing and delayed policy and target updates.

delayedDDPGAgent = rl1TD3Agent(actor,criticl,agentOptions);

See Also
rlTD3AgentOptions

Topics

“Twin-Delayed Deep Deterministic Policy Gradient Agents”
“Reinforcement Learning Agents”

“Train Reinforcement Learning Agents”

“Train Biped Robot to Walk Using Reinforcement Learning Agents”

Introduced in R2020a
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Options for TD3 agent

Description

Use an rlTD3AgentOptions object to specify options for twin-delayed deep deterministic policy
gradient (TD3) agents. To create a TD3 agent, use rlTD3Agent

For more information see “Twin-Delayed Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
Description

opt = rlTD3AgentOptions creates an options object for use as an argument when creating a TD3
agent using all default options. You can modify the object properties using dot notation.

opt = rlTD3AgentOptions(Name,Value) sets option properties on page 2-108 using name-value
pairs. For example, rlTD3AgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties

ExplorationModel — Exploration noise model options
GaussianActionNoise object (default) | OrnsteinUhlenbeckActionNoise object

Noise model options, specified as a GaussianActionNoise object or an
OrnsteinUhlenbeckActionNoise object. For more information on noise models, see “Noise
Models” on page 2-111.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different noise model parameters. If the actions have similar ranges and units, you
can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the variance of each action to a different value while
using the same decay rate for both variances.

opt = rlTD3AgentOptions;
opt.ExplorationModel.Variance = [0.1 0.2];
opt.ExplorationModel.VarianceDecayRate = le-4;
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TargetPolicySmoothModel — Target smoothing noise model options
GaussianActionNoise object

Target smoothing noise model options, specified as a GaussianActionNoise object. This model
helps the policy exploit actions with high Q-value estimates. For more information on noise models,
see “Noise Models” on page 2-111.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different smoothing noise model parameters. If the actions have similar ranges and
units, you can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the variance of each action to a different value while
using the same decay rate for both variances.

opt = rlTD3AgentOptions;
opt.TargetPolicySmoothModel.Variance = [0.1 0.2];
opt.TargetPolicySmoothModel.VarianceDecayRate = le-4;

PolicyUpdateFrequency — Number of steps between policy updates
2 (default) | positive integer

Number of steps between policy updates, specified as a positive integer.

TargetSmoothFactor — Smoothing factor for target actor and critic updates
0.005 (default) | positive scalar less than or equal to 1

Smoothing factor for target actor and critic updates, specified as a positive scalar less than or equal
to 1. For more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target actor and critic updates
2 (default) | positive integer

Number of steps between target actor and critic updates, specified as a positive integer. For more
information, see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Flag for clearing the experience buffer
true (default) | false

Flag for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Flag for saving the experience buffer
false (default) | true

Flag for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.

For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer
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Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

NumStepsToLookAhead — Number of steps ahead
1 (default) | positive integer

Number of steps to look ahead during training, specified as a positive integer.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent updates the actor
and critic using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlTD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent

Examples
Create TD3 Agent Options Object

This example shows how to create a TD3 agent option object.

Create an rlTD3AgentOptions object that specifies the mini-batch size.

opt rlTD3AgentOptions('MiniBatchSize"',48)
opt =
rlTD3AgentOptions with properties:

ExplorationModel: [1x1 rl.option.GaussianActionNoise]
TargetPolicySmoothModel: [1x1 rl.option.GaussianActionNoise]
PolicyUpdateFrequency: 2
TargetSmoothFactor: 0.0050
TargetUpdateFrequency: 2
ResetExperienceBufferBeforeTraining: 1
SaveExperienceBufferWithAgent: 0
MiniBatchSize: 48
NumStepsToLookAhead: 1
ExperienceBufferLength: 10000
SampleTime: 1



rITD3AgentOptions

DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Algorithms

Noise Models

Gaussian Action Noise

A GaussianActionNoise object has the following numeric value properties.

Property Description

Mean Noise model mean

Variance Noise model variance

VarianceDecayRate Decay rate of the variance

VarianceMin Minimum variance, which must be less than
Variance

LowerLimit Noise sample lower limit

UpperLimit Noise sample upper limit

Gaussian noise is sampled as shown in the following code.

Mean + rand(ActionSize).*Variance
min(max(x,LowerLimit) ,UpperLimit);

X
X

At each sample time step, the variance decays as shown in the following code.

decayedVariance = Variance.*(1 - VarianceDecayRate);
Variance = max(decayedVariance,VarianceMin);

Ornstein-Uhlenbeck Action Noise

An OrnsteinUhlenbeckActionNoise object has the following numeric value properties.

Property Description

InitialAction Initial value of action for noise model

Mean Noise model mean

MeanAttractionConstant Constant specifying how quickly the noise model
output is attracted to the mean

Variance Noise model variance

VarianceDecayRate Decay rate of the variance

VarianceMin Minimum variance

At each sample time step, the noise model is updated using the following formula, where Ts is the
agent sample time.
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x(k) = x(k-1) + MeanAttractionConstant.*(Mean - x(k-1)).*Ts
+ Variance.*randn(size(Mean)).*sqrt(Ts)

At each sample time step, the variance decays as shown in the following code.

decayedVariance = Variance.*(1 - VarianceDecayRate);
Variance = max(decayedVariance,VarianceMin);

For continuous action signals, it is important to set the noise variance appropriately to encourage
exploration. It is common to have Variance*sqrt(Ts) be between 1% and 10% of your action
range.

If your agent converges on local optima too quickly, promote agent exploration by increasing the

amount of noise; that is, by increasing the variance. Also, to increase exploration, you can reduce the
VarianceDecayRate.

See Also

Topics
“Twin-Delayed Deep Deterministic Policy Gradient Agents”

Introduced in R2020a
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Options for training reinforcement learning agents

Description

Use an rlTrainingOptions object to specify training options for an agent. To train an agent, use
train.

For more information on agents training and simulation, see “Train Reinforcement Learning Agents”.

Creation

Syntax

trainOpts = rlTrainingOptions
opt = rlTrainingOptions(Name,Value)

Description

trainOpts = rlTrainingOptions returns the default options for training a reinforcement
learning agent. Use training options to specify parameters about the training session such as the
maximum number of episodes to train, criteria for stopping training, criteria for saving agents, and
criteria for using parallel computing. After configuring the options, use trainOpts as an input
argument for train.

opt = rlTrainingOptions(Name,Value) creates a training options set with the specified
“Properties” on page 2-113 using one or more name-value pair arguments.

Properties

MaxEpisodes — Maximum number of episodes to train the agent
500 (default) | positive integer

Maximum number of episodes to train the agent, specified as the comma-separated pair consisting of
'MaxEpisodes' and a positive integer. Regardless of other criteria for termination, training
terminates after this many episodes.

Example: 'MaxEpisodes',b 1000

MaxStepsPerEpisode — Maximum number of steps to run per episode
500 (default) | positive integer

Maximum number of steps to run per episode, specified as the comma-separated pair consisting of
'MaxStepsPerEpisode' and a positive integer. In general, you define episode termination
conditions in the environment. This value is the maximum number of steps to run in the episode if
those termination conditions are not met.

Example: 'MaxStepsPerEpisode', 1000
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ScoreAveragingWindowLength — Window length for averaging
5 (default) | positive integer

Window length for averaging scores, rewards, and numbers of steps, specified as the comma-
separated pair consisting of 'ScoreAveragingWindowlLength' and a positive integer. For options
expressed in terms of averages, this is the number of episodes included in the average. For instance
suppose that StopTrainingCriteriais "AverageReward", and StopTrainingValue is 500.
Training terminates when the reward averaged over the number of episodes specified by this
parameter is 500 or greater.

Example: 'ScoreAveragingWindowLength', 10

StopTrainingCriteria — Training termination condition
"AverageSteps" (default) | "AverageReward" | "EpisodeCount™" | ...

Training termination condition, specified as the comma-separated pair consisting of
'StopTrainingCriteria' and one of the following strings:

* "AverageSteps" — Stop training when the running average number of steps per episode equals
or exceeds the critical value specified by the option StopTrainingValue. The average is
computed using the window 'ScoreAveragingWindowLength'.

* "AverageReward" — Stop training when the running average reward equals or exceeds the
critical value.

+ "EpisodeReward" — Stop training when the reward in the current episode equals or exceeds the
critical value.

* "GlobalStepCount" — Stop training when the total number of steps in all episodes (the total
number of times the agent is invoked) equals or exceeds the critical value.

* "EpisodeCount" — Stop training when the number of training episodes equals or exceeds the
critical value.

Example: 'StopTrainingCriteria', "AverageReward"

StopTrainingValue — Critical value of training termination condition
500 (default) | scalar

Critical value of training termination condition, specified as the comma-separated pair consisting of
'StopTrainingValue' and a scalar. Training terminates when the termination condition specified
by the StopTrainingCriteria option equals or exceeds this value. For instance, if
StopTrainingCriteriais "AverageReward", and StopTrainingValue is 100, then training
terminates when the average reward over the number of episodes specified in
'ScoreAveragingWindowlLength' equals or exceeds 100.

Example: 'StopTrainingValue', 100

SaveAgentCriteria — Condition for saving agent during training
"none" (default) | "EpisodeReward" | "AverageReward" | "EpisodeCount” | ...

Condition for saving agent during training, specified as the comma-separated pair consisting of
'SaveAgentCriteria' and one of the following strings:
* "none" — Do not save any agents during training.

+ "EpisodeReward" — Save agent when the reward in the current episode equals or exceeds the
critical value.
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* "AverageSteps" — Save agent when the running average number of steps per episode equals or
exceeds the critical value specified by the option StopTrainingValue. The average is computed
using the window 'ScoreAveragingWindowLength'.

* "AverageReward" — Save agent when the running average reward over all episodes equals or
exceeds the critical value.

* "GlobalStepCount" — Save agent when the total number of steps in all episodes (the total
number of times the agent is invoked) equals or exceeds the critical value.

* "EpisodeCount" — Save agent when the number of training episodes equals or exceeds the
critical value.

Set this option to store candidate agents that perform well according to the criteria you specify. When
you set this option to a value other than "none", the software sets the SaveAgentValue option to
500. You can change that value to specify the condition for saving the agent.

For instance, suppose you want to store for further testing any agent that yields an episode reward
that equals or exceeds 100. To do so, set SaveAgentCriteriato "EpisodeReward" and set the
SaveAgentValue option to 100. When an episode reward equals or exceeds 100, train saves the
corresponding agent in a MAT-file in the folder specified by the SaveAgentDirectory option. The
MAT-ile is called AgentK.mat where K is the number of the corresponding episode. The agent is
stored within that MAT-file as saved_agent.

Example: 'SaveAgentCriteria', "EpisodeReward"

SaveAgentValue — Critical value of condition for saving agent
"none" (default) | 500 | scalar

Critical value of condition for saving agent, specified as the comma-separated pair consisting of
'SaveAgentValue' and "none" or a numeric scalar.

When you specify a condition for saving candidate agents using SaveAgentCriteria, the software
sets this value to 500. Change the value to specify the condition for saving the agent. See the
SaveAgentValue option for more details.

Example: 'SaveAgentValue', 100

SaveAgentDirectory — Folder for saved agents
"savedAgents" (default) | string | character vector

Folder for saved agents, specified as the comma-separated pair consisting of
'SaveAgentDirectory' and a string or character vector. The folder name can contain a full or
relative path. When an episode occurs that satisfies the condition specified by the
SaveAgentCriteria and SaveAgentValue options, the software saves the agent in a MAT-file in
this folder. If the folder doesn't exist, train creates it. When SaveAgentCriteriais "none", this
option is ignored and train does not create a folder.

Example: 'SaveAgentDirectory', pwd + "\runl\Agents"

UseParallel — Flag for using parallel training
false (default) | true

Flag for using parallel training, specified as the comma-separated pair consisting of 'UseParallel’
and either true or false. Setting this option to true configures training to use parallel computing.
To specify options for parallel training, use the ParallelizationOptions property.

Using parallel computing requires Parallel Computing Toolbox software.
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For more information about training using parallel computing, see “Train Reinforcement Learning
Agents”.

Example: 'UseParallel’, true

ParallelizationOptions — Options to control parallel training
ParallelTraining object

Parallelization options to control parallel training, specified as the comma-separated pair consisting
of 'ParallelizationOptions' and a ParallelTraining object. For more information about
training using parallel computing, see “Train Reinforcement Learning Agents”.

The ParallelTraining object has the following properties, which you can modify using dot
notation after creating the rlTrainingOptions object.

Mode — Parallel computing mode
"sync" (default) | "async"”

Parallel computing mode, specified as one of the following:

* "sync" — Use parpool to run synchronous training on the available workers. In this case,
workers pause execution until all workers are finished. The host updates the actor and critic
parameters based on the results from all the workers and sends the updated parameters to all
workers.

* "async" — Use parpool to run asynchronous training on the available workers. In this case,
workers send their data back to the host as soon as they finish and receive updated parameters
from the host. The workers then continue with their task.

DataToSendFromWorkers — Type of data that workers send to the host
"experiences" (default) | "gradients”

Type of data that workers send to the host, specified as one of the following strings:
+ "experiences" — Send experience data (observation, action, reward, next observation, is done)
to the host. For agents with gradients, the host computes gradients from the experiences.

* "gradients" — Compute and send gradients to the host. The host applies gradients to update
networks parameters.

Note AC and PG agents accept only DataToSendFromwWorkers = "gradients". DQN and DDPG
agents accept only DataToSendFromWorkers = "experiences".

StepsUntilDataIsSent — When workers send data to host
—1 (default) | positive integer

When workers send data to host and receive updated parameters, specified as —1 or a positive
integer. This number indicates how many steps to compute during the episode before sending data to
the host. When this option is -1, the worker waits until the end of the episode and then sends all step
data to the host. Otherwise, the worker waits the specified number of steps before sending data.

Note
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* AC agents do not accept StepUntilDataIsSent = -1. For A3C training, set
StepUntilDatalIsSent equal to the NumStepToLookAhead AC agent option.

* PG agents accept only StepUntilDatalsSent = -1.

WorkerRandomSeeds — Randomizer initialization for workers
—1 (default) | -2 | vector

Randomizer initialization for workers, specified as one the following:

* —1 — Assign a unique random seed to each worker. The value of the seed is the worker ID.
+ —2 — Do not assign a random seed to the workers.

* Vector — Manually specify the random seed for each work. The number of elements in the vector
must match the number of workers.

TransferBaseWorkspaceVariables — Send model and workspace variables to parallel
workers
"on" (default) | "off"

Send model and workspace variables to parallel workers, specified as "on" or "off". When the
option is "on", the host sends variables used in models and defined in the base MATLAB workspace
to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[ 1 (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.

SetupFcn — Function to run before training starts
[1 (default) | function handle

Function to run before training starts, specified as a handle to a function having no input arguments.
This function is run once per worker before training begins. Write this function to perform any
processing that you need prior to training.

CleanupFcn — Function to run after training ends
[1 (default) | function handle

Function to run after training ends, specified as a handle to a function having no input arguments.
You can write this function to clean up the workspace or perform other processing after training
terminates.

Verbose — Display training progress on the command line
false (0) (default) | true (1)

Display training progress on the command line, specified as the logical values false (0) or true (1).
Set to true to write information from each training episode to the MATLAB command line during
training.

StopOnError — Stop training when error occurs

"on" (default) | "off"
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Stop training when an error occurs during an episode, specified as "on" or "off". When this option
is "off", errors are captured and returned in the SimulationInfo output of train, and training
continues to the next episode.

Plots — Display training progress with the Episode Manager
“training-progress" (default) | "none"

Display training progress with the Episode Manager, specified as "training-progress" or
"none". By default, calling train opens the Reinforcement Learning Episode Manager, which
graphically and numerically displays information about the training progress, such as the reward for
each episode, average reward, number of episodes, and total number of steps. (For more information,
see train.) To turn off this display, set this option to "none".

Object Functions
train Train a reinforcement learning agent within a specified environment

Examples

Configure Options for Training

Create an options set for training a reinforcement learning agent. Set the maximum number of
episodes and the maximum steps per episode to 1000. Configure the options to stop training when
the average reward equals or exceeds 480, and turn on both the command-line display and the
Reinforcement Learning Episode Manager for displaying training results. You can set the options
using Name,Value pairs when you create the options set. Any options that you do not explicitly set
have their default values.

trainOpts = rlTrainingOptions(...
'MaxEpisodes', 1000, ...
'MaxStepsPerEpisode’, 1000, ...
'StopTrainingCriteria', "AverageReward", ...
'StopTrainingValue',480, ...
'Verbose', true, ...
'Plots',"training-progress")

trainOpts =
rlTrainingOptions with properties:

MaxEpisodes: 1000
MaxStepsPerEpisode: 1000
ScoreAveragingWindowlLength: 5
StopTrainingCriteria: "AverageReward"
StopTrainingValue: 480
SaveAgentCriteria: "none"
SaveAgentValue: "none"
UseParallel: 0
ParallelizationOptions: [1x1 rl.option.ParallelTraining]
SaveAgentDirectory: "savedAgents"
StopOnError: "on"
Verbose: 1
Plots: "training-progress"

Alternatively, create a default options set and use dot notation to change some of the values.
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trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 1000;
trainOpts.StopTrainingCriteria = "AverageReward";

trainOpts.

StopTrainingValue = 480;

trainOpts.Verbose = true;
trainOpts.Plots = "training-progress";
trainOpts
trainOpts =
rlTrainingOptions with properties:
MaxEpisodes: 1000
MaxStepsPerEpisode: 1000
ScoreAveragingWindowlLength: 5
StopTrainingCriteria: "AverageReward"
StopTrainingValue: 480
SaveAgentCriteria: "none"
SaveAgentValue: "none"
UseParallel: 0
ParallelizationOptions: [1x1 rl.option.ParallelTraining]
SaveAgentDirectory: "savedAgents"
StopOnError: "on"
Verbose: 1
Plots: "training-progress"

You can now use trainOpts as an input argument to the train command.

See Also

Topics
“Reinforcement Learning Agents”

Introduced in R2019a
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rlValueRepresentation

Value function critic representation for reinforcement learning agents

Description

This object implements a value function approximator to be used as a critic within a reinforcement
learning agent. A value function is a function that maps an observation to a scalar value. The output
represents the expected total long-term reward when the agent starts from the given observation and
takes the best possible action. Value function critics therefore only need observations (but not
actions) as inputs. After you create an rlValueRepresentation critic, use it to create an agent
relying on a value function critic, such as an rlACAgent or rlPGAgent. For an example of this
workflow, see “Create Actor and Critic Representations” on page 2-123. For more information on
creating representations, see “Create Policy and Value Function Representations”.

Creation

Syntax

net,observationInfo, 'Observation', obsName)
tab,observationInfo)
{basisFcn,W0},observationInfo)
____,options)

critic = rlValueRepresentation
critic rlValueRepresentation
critic rlValueRepresentation
critic = rlValueRepresentation

—~ o~ o~ o~

Description

critic = rlValueRepresentation(net,observationInfo, 'Observation',obsName)
creates the value function based critic from the deep neural network net. This syntax sets the
ObservationInfo property of critic to the input observationInfo. obsName must contain the
names of the input layers of net.

critic = rlValueRepresentation(tab,observationInfo) creates the value function based
critic with a discrete observation space, from the value table tab, which is an rlTable object
containing a column array with as many elements as the possible observations. This syntax sets the
ObservationInfo property of critic to the input observationInfo.

critic = rlValueRepresentation({basisFcn,W0},observationInfo) creates the value
function based critic using a custom basis function as underlying approximator. The first input
argument is a two-elements cell in which the first element contains the handle basisFcn to a custom
basis function, and the second element contains the initial weight vector WO. This syntax sets the
ObservationInfo property of critic to the input observationInfo.

critic = rlValueRepresentation(  ,options) creates the value function based critic
using the additional option set options, which is an rlRepresentationOptions object. This
syntax sets the Options property of critic to the options input argument. You can use this syntax
with any of the previous input-argument combinations.
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Input Arguments

net — Deep neural network
array of Layer objects | LayerGraph object | DAGNetwork object | SeriesNetwork object |
dUNetwork object

Deep neural network used as the underlying approximator within the critic, specified as one of the
following:

* Array of Layer objects
* layerGraph object

* DAGNetwork object

* SeriesNetwork object
* dlnetwork object

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

rlValueRepsentation objects support recurrent deep neural networks.

For a list of deep neural network layers, see “List of Deep Learning Layers” (Deep Learning Toolbox).
For more information on creating deep neural networks for reinforcement learning, see “Create
Policy and Value Function Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net. These network layers must be in the same order and
with the same data type and dimensions as the signals defined in ObservationInfo.

Example: {'my obs'}

tab — Value table
rlTable object

Value table, specified as an rlTable object containing a column vector with length equal to the
number of observations. The element i is the expected cumulative long-term reward when the agent
starts from the given observation s and takes the best possible action. The elements of this vector are
the learnable parameters of the representation.

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined function. The user defined
function can either be an anonymous function or a function on the MATLAB path. The output of the
criticis ¢ = W'*B, where W is a weight vector and B is the column vector returned by the custom
basis function. c is the expected cumulative long term reward when the agent starts from the given
observation and takes the best possible action. The learnable parameters of this representation are
the elements of W.

When creating a value function critic representation, your basis function must have the following
signature.
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B = myBasisFunction(obsl,obs2,...,o0bsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in ObservationInfo.

Example: @(obs1l,0bs2,0bs3) [obs3(1)*obsl(1)"2; abs(obs2(5)+obsl(2))]

WO — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a column vector having the same length as
the vector returned by the basis function.

Properties

Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, a reinforcement learning specification object or an array of specification
objects defining properties such as the dimensions, data types, and names of the observation signals.
You can extract ObservationInfo from an existing environment or agent using getObservationInfo.
You can also construct the specs manually using a specification command such as rlFiniteSetSpec
or rlNumericSpec.

Object Functions

rlACAgent  Actor-critic reinforcement learning agent

rIlPGAgent  Policy gradient reinforcement learning agent

rlPPOAgent Proximal policy optimization reinforcement learning agent
getValue Obtain estimated value function representation

Examples

Create Value Function Critic from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]1);

Create a deep neural network to approximate the value function within the critic. The input of the
network (here called myobs) must accept a four-dimensional vector (the observation vector defined
by obsInfo), and the output must be a scalar (the value, representing the expected cumulative long-
term reward when the agent starts from the given observation).
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net = [imagelInputLayer([4 1 1], 'Normalization', 'none', 'Name', 'myobs")
fullyConnectedLayer(1, 'Name', 'value')];

Create the critic using the network, observation specification object, and name of the network input
layer.

critic = rlValueRepresentation(net,obsInfo, 'Observation', {'myobs'})

critic =
rlValueRepresentation with properties:

ObservationInfo: [1x1 rl.util.rlNumericSpec]

Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a random observation, using
the current network weights.

\Y; getValue(critic,{rand(4,1)})

single
0.7904

\Y

You can now use the critic (along with an actor) to create an agent relying on a value function critic
(such as rlACAgent or rlPGAgent).

Create Actor and Critic Representations

Create an actor representation and a critic representation that you can use to define a reinforcement
learning agent such as an Actor Critic (AC) agent.

For this example, create actor and critic representations for an agent that can be trained against the
cart-pole environment described in “Train AC Agent to Balance Cart-Pole System”. First, create the
environment. Then, extract the observation and action specifications from the environment. You need
these specifications to define the agent and critic representations.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For a state-value-function critic such as those used for AC or PG agents, the inputs are the
observations and the output should be a scalar value, the state value. For this example, create the
critic representation using a deep neural network with one output, and with observation signals
corresponding to x, xdot, theta, and thetadot as described in “Train AC Agent to Balance Cart-
Pole System”. You can obtain the number of observations from the obsInfo specification. Name the
network layer input 'observation’.

numObservation = obsInfo.Dimension(1);

criticNetwork = [
imagelInputLayer([numObservation 1 1], 'Normalization', 'none', 'Name', 'observation')
fullyConnectedLayer(1, 'Name', 'CriticFC')];

Specify options for the critic representation using rlRepresentationOptions. These options
control the learning of the critic network parameters. For this example, set the learning rate to 0.05
and the gradient threshold to 1.
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repOpts = rlRepresentationOptions('LearnRate’',5e-2, 'GradientThreshold',1);

Create the critic representation using the specified neural network and options. Also, specify the
action and observation information for the critic. Set the observation name to 'observation’,
which is the of the criticNetwork input layer.

critic = rlValueRepresentation(criticNetwork,obsInfo, 'Observation',{'observation'}, repOpts)

critic =
rlValueRepresentation with properties:

ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

Similarly, create a network for the actor. An AC agent decides which action to take given observations
using an actor representation. For an actor, the inputs are the observations, and the output depends
on whether the action space is discrete or continuous. For the actor of this example, there are two
possible discrete actions, -10 or 10. To create the actor, use a deep neural network with the same
observation input as the critic, that can output these two values. You can obtain the number of
actions from the actInfo specification. Name the output 'action’.

numAction = numel(actInfo.Elements);

actorNetwork = [
imagelnputlLayer([4 1 1], 'Normalization', 'none', 'Name', 'observation')
fullyConnectedlLayer(numAction, 'Name', 'action')];

Create the actor representation using the observation name and specification and the same
representation options.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'observation'}, repOpts)

actor =
rlStochasticActorRepresentation with properties:

ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
ObservationInfo: [1x1 rl.util.rlNumericSpec]
Options: [1x1 rl.option.rlRepresentationOptions]

Create an AC agent using the actor and critic representations.

agentOpts = rlACAgentOptions(...
"NumStepsToLookAhead',32,...
'DiscountFactor',0.99);

agent = rlACAgent(actor,critic,agentOpts)

agent =
rlACAgent with properties:

AgentOptions: [1x1 rl.option.rlACAgentOptions]
For additional examples showing how to create actor and critic representations for different agent
types, see:

* “Train DDPG Agent to Control Double Integrator System”
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» “Train DQN Agent to Balance Cart-Pole System”

Create Value Function Critic from Table

Create a finite set observation specification object (or alternatively use getObservationInfo to
extract the specification object from an environment with a discrete observation space). For this
example, define the observation space as a finite set consisting of 4 possible values.

obsInfo = rlFiniteSetSpec([1 3 5 7]);
Create a table to approximate the value function within the critic.

vTable = rlTable(obsInfo);

The table is a column vector in which each entry stores the expected cumulative long-term reward for
each possible observation as defined by obsInfo. You can access the table using the Table property
of the vTable object. The initial value of each element is zero.

vTable.Table

ans = 4x1

[cNoNoNO)

You can also initialize the table to any value, in this case, an array containing all the integers from 1
to 4.

vTable.Table = reshape(1l:4,4,1)

vTable =
rlTable with properties:

Table: [4x1 double]

Create the critic using the table and the observation specification object.
critic = rlValueRepresentation(vTable,obsInfo)

critic =
rlValueRepresentation with properties:

ObservationInfo: [1x1 rl.util.rlFiniteSetSpec]

Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation, using the
current table entries.

\% getValue(critic,{7})

Y 4

2-125



2 Objects

2-126

You can now use the critic (along with an actor) to create an agent relying on a value function critic
(such as rlACAgent or rlPGAgent agent).

Create Value Function Critic from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations
defined by obsInfo.

myBasisFcn = @(myobs) [myobs(2)”2; myobs(3)+exp(myobs(1l)); abs(myobs(4))]

myBasisFcn = function handle with value:
@(myobs) [myobs (2)”2;myobs(3)+exp(myobs(1));abs(myobs(4))]

The output of the critic is the scalar W' *myBasisFcn(myobs), where W is a weight column vector
which must have the same size of the custom basis function output. This output is the expected
cumulative long term reward when the agent starts from the given observation and takes the best
possible action. The elements of W are the learnable parameters.

Define an initial parameter vector.
wWe = [3;5;2];

Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight vector. The second argument is the observation specification object.

critic rlValueRepresentation({myBasisFcn,W0},obsInfo)

critic =
rlValueRepresentation with properties:

ObservationInfo: [1x1 rl.util.rlNumericSpec]

Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation, using the
current parameter vector.

\; getValue(critic,{[2 4 6 8]'})

VvV =
1x1 dlarray

130.9453
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You can now use the critic (along with an with an actor) to create an agent relying on a value function
critic (such as rlACAgent or rlPGAgent).

Create Value Function Critic from Recurrent Neural Network

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);

actInfo = getActionInfo(env);

numObs = obsInfo.Dimension(1l);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for the critic. To create a recurrent neural network, use a
sequencelInputLayer as the input layer and include at least one LstmLayer.

criticNetwork = [
sequencelnputlLayer(numObs, '‘Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(8, 'Name','fc')
reluLayer('Name', 'relu')
lstmLayer(8, 'OutputMode', 'sequence', 'Name', 'lstm')
fullyConnectedLayer(1, 'Name', 'output')];

Create a value function representation object for the critic.
criticOptions = rlRepresentationOptions('LearnRate',le-2, 'GradientThreshold',1);

critic = rlValueRepresentation(criticNetwork,obsInfo,...
'Observation', 'state',criticOptions);

See Also

Functions
getActionInfo | getObservationInfo | rlRepresentationOptions

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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Scaling layer for actor or critic network

Description

A ScalinglLayer is a deep neural network layer that linearly scales and biases an input array U,
giving an output Y = Scale.*U + Bias. You can incorporate this layer into the deep neural
networks you define for actors or critics in reinforcement learning agents. This layer is useful for
scaling and shifting the outputs of nonlinear layers, such as tanhLayer and sigmoid.

For instance, a tanhLayer gives bounded output that falls between -1 and 1. If your actor network
output has different bounds (as defined in the actor specification), you can include a ScalingLayer
as an output to scale and shift the actor network output appropriately.

The parameters of a ScalinglLayer object are not learnable.

Creation

Syntax

sLayer
sLayer

scalinglLayer
scalingLayer(Name,Value)

Description
sLayer = scalinglLayer creates a scaling layer with default property values.

sLayer = scalinglLayer(Name,Value) sets properties on page 2-128 using name-value pairs. For
example, scalinglayer('Scale',0.5) creates a scaling layer that scales its input by 0.5. Enclose
each property name in quotes.

Properties

Name — Name of layer
'scaling' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to ' ', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
‘Scaling layer' (default) | character vector

This property is read-only.

Description of layer, specified as a character vector. When you create the scaling layer, you can use
this property to give it a description that helps you identify its purpose.
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Scale — Element-wise scale on input
1 (default) | scalar | array

Element-wise scale on the input to the scaling layer, specified as one of the following:

» Scalar — Specify the same scale factor for all elements of the input array.

* Array with the same dimensions as the input array — Specify different scale factors for each
element of the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.

Bias — Element-wise bias on input
0 (default) | scalar | array

Element-wise bias on the input to the scaling layer, specified as one of the following:

* Scalar — Specify the same bias for all elements of the input array.

* Array with the same dimensions as the input array — Specify a different bias for each element of
the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.

Examples

Create Scaling Layer

Create a scaling layer that converts an input array U to the output array Y = 0.1.*U - 0.4.
sLayer = scalinglLayer('Scale',0.1,'Bias',-0.4)

sLayer =
ScalinglLayer with properties:

Name: 'scaling'
Scale: 0.1000
Bias: -0.4000

Show all properties

Confirm that the scaling layer scales and offsets an input array as expected.
predict(sLayer,[10,20,30])
ans = 1x3

0.6000 1.6000 2.6000

You can incorporate sLayer into an actor network or critic network for reinforcement learning.
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Specify Different Scale and Bias for Each Input Element

Assume that the layer preceding the scalinglLayer is a tanhLayer with three outputs and that you
want to apply a different scaling factor and bias to each out using a scalinglLayer. Since the
tanhLayer outputs its channels along the third dimension, the scale and bias must be 1-by-1-by-3
arrays.

scale = reshape([2.5 0.4 10],[1 1 3]);
bias = reshape([5 0 -50],[1 1 3]);

Create the scalinglLayer object.
sLayer = scalinglLayer('Scale',scale, 'Bias', bias);

Confirm that the scaling layer applies the correct scale and bias values to an array with the expected
dimensions.

testData = reshape([10 10 10],[1 1 3]);
predict(sLayer, testData)

ans =

ans(:,:,1) =
30

ans(:,:,2) =
4

ans(:,:,3) =
50

See Also

quadraticlLayer | softplusLayer

Topics
“Train DDPG Agent to Swing Up and Balance Pendulum”
“Create Policy and Value Function Representations”

Introduced in R2019a
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softplusLayer

Softplus layer for actor or critic network

Description

A SoftplusLayer is a deep neural network layer that implements the softplus activation Y = log(1 +
eX), which ensures that the output is always positive. This activation function is a smooth continuous
version of reluLayer. You can incorporate this layer into the deep neural networks you define for
actors in reinforcement learning agents. This layer is useful for creating continuous Gaussian policy
deep neural networks, for which the standard deviation output must be positive.

Creation

Syntax

sLayer = softplusLayer

sLayer = softplusLayer(Name,Value)

Description
sLayer = softpluslLayer creates a softplus layer with default property values.
sLayer = softplusLayer(Name,Value) sets properties on page 2-131 using name-value pairs.

For example, softplusLayer('Name', 'softlayer') creates a softplus layer and assigns the
name 'softlayer’.

Properties

Name — Name of layer
'softplus' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to ' ', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
'Softplus layer' (default) | character vector

This property is read-only.

Description of layer, specified as a character vector. When you create the softplus layer, you can use
this property to give it a description that helps you identify its purpose.

Examples
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Create Softplus Layer
Create s softplus layer.
sLayer = softplusLayer;

You can specify the name of the softplus layer. For example, if the softplus layer represents the
standard deviation of a Gaussian policy deep neural network, you can specify an appropriate name.

sLayer = softplusLayer('Name', 'stddev')

sLayer =
SoftplusLayer with properties:

Name: 'stddev'

Show all properties

You can incorporate sLayer into an actor network for reinforcement learning.

See Also
quadraticlLayer | scalinglLayer

Topics
“Create Policy and Value Function Representations”

Introduced in R2020a
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3 Blocks

RL Agent

Reinforcement learning agent
Reinforcement Learning Toolbox

Library:

Description

Use the RL Agent block to simulate and train a reinforcement learning agent in Simulink. You

obsarvation

reward

isdona

action

associate the block with an agent stored in the MATLAB workspace or a data dictionary as an agent
object such as an rlACAgent or rLDDPGAgent object. You connect the block so that it receives an

observation and a computed reward. For instance, consider the following block diagram of the
riSimplePendulumModel model.
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The observation input port of the RL Agent block receives a signal that is derived from the

achon

obearvation

rewand

isdone

dtheta

[

creats oheervations

RL Agent

instantaneous angle and angular velocity of the pendulum. The reward port receives a reward
calculated from the same two values and the applied action. You configure the observations and

reward computations that are appropriate to your system.
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The block uses the agent to generate an action based on the observation and reward you provide.
Connect the action output port to the appropriate input for your system. For instance, in the
rlSimplePendulumModel, the action port is a torque applied to the pendulum system. For more
information about this model, see “Train DQN Agent to Swing Up and Balance Pendulum”.

To train a reinforcement learning agent in Simulink, you generate an environment from the Simulink
model. You then create and configure the agent for training against that environment. For more

information, see “Create Simulink Environments for Reinforcement Learning”. When you call train
using the environment, train simulates the model and updates the agent associated with the block.

Ports
Input

observation — Environment observations
scalar | vector | nonvirtual bus

This port receives observation signals from the environment. Observation signals represent
measurements or other instantaneous system data. If you have multiple observations, you can use a
Mux block to combine them into a vector signal. To use a nonvirtual bus signal, use bus2RLSpec.

reward — Reward from environment
scalar

This port receives the reward signal, which you compute based on the observation data. The reward
signal is used during agent training to maximize the expectation of the long-term reward.

isdone — Flag to terminate episode simulation
logical

Use this signal to specify conditions under which to terminate a training episode. You must configure
logic appropriate to your system to determine the conditions for episode termination. One application
is to terminate an episode that is clearly going well or going poorly. For instance, you can terminate
an episode if the agent reaches its goal or goes irrecoverably far from its goal.

Output

action — Agent action
scalar | vector | nonvirtual bus

Action computed by the agent based on the observation and reward inputs. Connect this port to the
inputs of your system. To use a nonvirtual bus signal, use bus2RLSpec.

cumulative_reward — Total reward
scalar | vector

Cumulative sum of the reward signal during simulation. Observe or log this signal to track how the
cumulative reward evolves over time.

Dependencies

To enable this port, select the Provide cumulative reward signal parameter.
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Parameters

Agent object — Agent to train
agent (default) | agent object

Enter the name of an agent object stored in the MATLAB workspace or a data dictionary, such as an
rLACAgent or rlDDPGAgent object. For information about agent objects, see “Reinforcement
Learning Agents”.

Provide cumulative reward signal — Add cumulative reward output port
of f (default) | on

Enable the cumulative reward block output by selecting this parameter.

See Also
bus2RLSpec | createIntegratedEnv

Topics
“Create Simulink Environments for Reinforcement Learning”
“Create Simulink Environment and Train Agent”

Introduced in R2019a
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